

High granularity, symmetric, differential strip readout timing MRPC – in beam test results, CERN 2010

> High granularity, symmetric, differential strip architecture – short review

In-beam test @ PS - CERN

• experimental set-up

• results from in-beam tests (November 2010)

• dark rate

· cluster size

· efficiency

• time resolution

• position resolution along the strip

Conclusion & Outlook

2 x 7 gaps – cross section High voltage electrodes for both polarities

2.54 mm strip pitch = 1.1 mm strip width + 1.44 mm gap width Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

$2 \times 5 \text{ gaps} - cross \text{ section}$ High voltage electrodes for both polarities

Symmetric two stack structure, differential readout Active area 46 x 180 mm²

Electrodes: low resistivity glass: 0.7 mm (Chinese glass)

 2×5 gas gaps; 140 µm thickness each gap

Readout electrodes: 1 double sided anode + 2 single sided cathodes

made from pcb with copper strips: 72 strips:

2.54 mm strip pitch = 1.1 mm strip width + 1.44 mm gap width

Third version – RPC4:

- strip structure high voltage electrodes for both polarities

3

In-Beam Tests @ PS - CERN

Experimental set-up:

- pion beam, 6 GeV/c momentum
- 2 plastic scintillators 2 x 2 cm² overlap, used as reference (S1S2/S3S4)
- 2 plastic scintillators 1 x 1 cm² overlap used for active collimation (h1/v1&h2/v2)
- FEE: differential readout based on NINO chip developed within ALICE Collaboration
- digital converters: CAEN TDC V1290A
- information recorded for 16 strips readout at both ends for each RPC.
 4

Dark rate

5

Beam Profile

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

6

Efficiency

Efficiency @ different gas mixture

⁸

Cluster size

9

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Cluster size a different gas mixture

RPC3 - strip structure high voltage electrodes for both polarities in contact with a resistive layer

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

10

Time resolution using as reference

In all cases we extracted quadratically the contribution of the electronics (pulser data) from the corresponding sigma, using the same channel combinations

11

Time resolution using as reference a plastic scintillator readout at both ends (S3S4)

Time of flight spectrum

Reference time spectrum

Time resolution using as reference a plastic scintillator readout at both ends

RPC3 - strip structure high voltage electrodes for both polarities in contact with a resistive layer the shown results are for the strip with the highest statistics 13

Time resolution using as reference a plastic scintillator readout at both ends

- RPC5 - strip structure high voltage electrodes for both polarities - the shown results are for the strip with the highest statistics 14

Time resolution using

B: RPC counter versus an other RPC counter

TDC3 TDC2 TDC1 ch16 **S**4 **S**4 **S**4 ch0 **S1 S**3 S2 RPC3 RPC5 RPC4 Gas mixture: 95% $C_2F_4H_2 + 5\% SF_6$

- S4 used for clock synchronization between TDCs in the measurements RPC versus RPC

$$\Delta t_{TOF} = \frac{t_{RPCn,l} + t_{RPCn,r}}{2} - \frac{t_{RPCm,l} + t_{RPCm,r}}{2}$$
$$\sigma \inf_{TOF} = \sigma \frac{2}{TOF} - \sigma \frac{2}{electronics}$$

$$\sigma_{RPC} = (\sigma_{TOF}) / \sqrt{2}$$

In all cases we extracted quadratically the contribution of the electronics (pulser data) from the corresponding sigma, using the same channel combinations Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Time resolution using **RPC4** (Chinese glass) vs. **RPC5** (strip HV)

TOF spectrum tmcorr Tcorr2 Entries 19726 Entries 7843 Mean 287.4 Mean -0.1093 2200 ⊟ Counts Counts RMS 3.68 4.522 RMS Underflow 99 700E Underflow n 2000 Overflow 90 Integral 1.954e+04 Overflow χ^2 / ndf 1800 25.86 / 27 Integral 7842 600 Constant 2119 ± 18.8 χ^2 / ndf 62.07 / 42 Mean $\textbf{287.7} \pm \textbf{0.0}$ 1600 707.4 ± 10.2 Constant Sigma 3.674 ± 0.019 500 Mean -0.1077 ± 0.0498 1400 Sigma 4.387 ± 0.039 1200 400 1000 300E 800 600 200 400 100 200 E 040 250 -20 20 30 260 270 290 300 310 -30 -10 10 280 0 Time (Channels) Time (Channels)

Pulser spectrum

 $HV RPC4 = 10.6 kV \rightarrow 2.12 kV/gap$

 $HV RPC5 = 14.6 \ kV \rightarrow 2.086 \ kV/gap$

16

Time resolution using RPC4 (Chinese glass) vs. RPC5 (strip HV)

HV RPC4 = 10.6 *kV* -> 2.12 *kV/gap*

 $HV RPC5 = 14.6 \ kV \rightarrow 2.086 \ kV/gap$

17

Some experimental details

- S4 used for clock synchronization between TDCs in the measurements RPC versus RPC

Beam data

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Some experimental details Beam data

Time resolution using RPC4 (Chinese glass) and RPC3 (strip HV + resistive layer)

 $HV RPC3 = 14.6 kV \rightarrow 2.086 kV/gap$

Time resolution using RPC5 (strip HV) and RPC3 (strip HV + resistive layer)

 $HV RPC3 = 14.6 \ kV \rightarrow 2.086 \ kV/gap$

Position information along the strip

RPC5 – horizontal strips

Time resolution using RPC4 (Chinese glass) vs. RPC5 (strip HV)

TOF spectrum

Counts

Pulser spectrum

HV RPC4 = 10.8 *kV* -> 2.16 *kV/gap*

HV RPC5 = 14.8 *kV* -> 2.11 *kV/gap*

RPC5-HV (V)	$\sigma_{_{RPC}}(ps)$
2x7300	47
2x7400	40

Time resolution using RPC3 (strip HV + resistive layer) vs. RPC5 (strip HV)

TOF spectrum

Pulser spectrum

 $HVRPC4 = 14.8 \ kV \rightarrow 2.11 \ kV/gap$

HV RPC5 = 14.8 *kV* -> 2.11 *kV/gap*

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Position resolution along the horizontal strips - ch13

Position resolution along the horizontal strips

У

26

Position resolution along the vertical strips

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Position resolution along the vertical strips

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

28

Why differences between the position resolutions of the two counters?

Mariana Petris, CBM Meeting, 4-8 April 2011, Dresden, Germany

Conclusions & Outlook

- The in-beam test results for the RPC prototypes show:

- a detection efficiency better than 97%
- a cluster size of 3 3.1 strips (a) 2.1 kV/gap
- *a time resolution better than 55 ps*
- a position resolution along the strip of ~ 4.5 mm
- *the obtained efficiency and cluster size are a bit lower for the RPC5*
- (2x 7 gaps, strip HV electrodes) prototype
- the time resolution is systematically better for the gas mixtures based on iso-butane the presented results from in-beam tests @CERN & the results of the in-beam tests @ COSY, which will be presented by Ingo, recommend this structures as a real solution for the most inner part of CBM-TOF wall

In progress:

- Tentative architecture for the most inner part of the TOF-wall (see Mihai's talk)
- · Associated FEE based on miniaturized eight channel NINO board (see Mihai's talk)
- Precize position resolution across the strips
- Detailed high counting rate tests
- Multihit performance tests
- · Towards a "demonstrator"

30

Participants

NIPNE – Bucharest D. Bartos G. Caragheorgheopol F. Constantin M. Petris M. Petrovici V. Simion

CERN - Geneva K. Doroud M. C. S. Williams

Special Thanks to: V. Aprodu, L. Prodan and A. Radu

Uni Heidelberg I. Deppner N. Herrmann P. Loizeau