

Activities and achievements in the past year
Remarks on additional activities
2017 perspectives

HADRON PHYSICS DEPARTMENT

Natinal Institute for Physics and Nuclear Engineering – IFIN-HH

http://niham.nipne.ro

ISAB Meeting, November 14, 2016

Highlights of accomplishments in the last year

- <u>Physics</u>
- Multiplicity and directivity dependent p_T distributions for identified charged hadrons in pp collisions at $\sqrt{s} = 7$ TeV
- Charged particle p_T spectra as a function of multiplicity in pp collisions at $\sqrt{s} = 7$ TeV up to 40 GeV/c
- Bjorken energy density estimates for pp collisions at $\sqrt{s} = 7$ TeV
- Detailed comparison of pp (\sqrt{s} = 7 TeV), p-Pb ($\sqrt{s_{NN}}$ = 5.02 TeV) and Pb-Pb ($\sqrt{s_{NN}}$ = 2.76 TeV)
- BGBW fits for Pb-Pb data on different species
- Core-Corona effects in Pb-Pb collisions at 2.76 TeV
- Two particle correlation studies as a function of multiplicity and directivity
- 32 presentations in ALICE meetings
- 2 Internal Notes
- 2 conference presentations
- 9 papers with direct or indirect contributions (co-authors to other 32)
- 8 conferences with direct or indirect contributions
- PC members
- TRD tracking and QA activities
- <u>ALICE upgrade</u>

- Assembling and testing the first OROC (with two stacks OROC1 & OROC3) for PRR

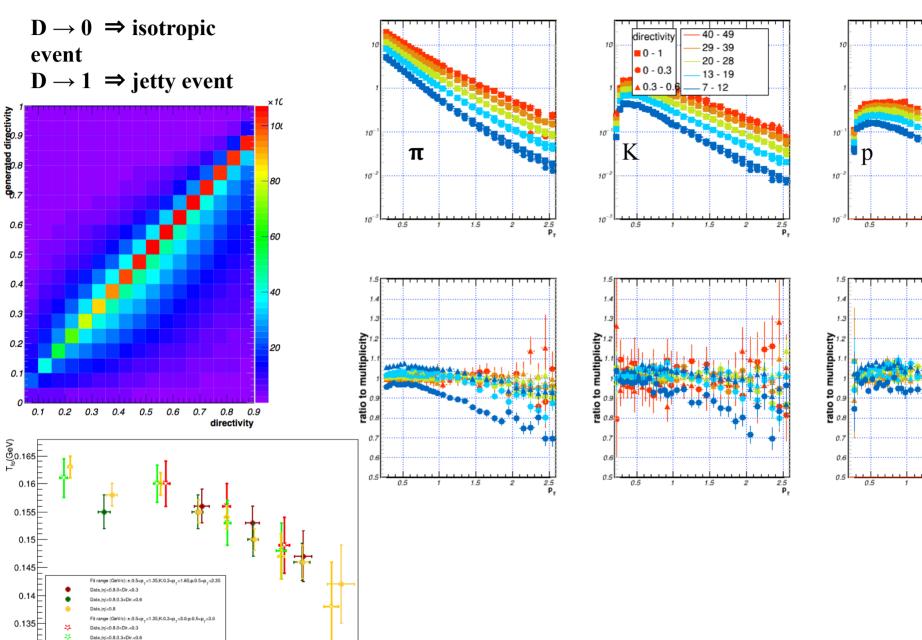
- <u>Computing</u>
- Maintaining NIHAM in a leading position among Tier2s ALICE GRID centres, NAF efficient management
- ALICE shifts
- Participation to detector operation: 90.5 credits (87%) ((Run manager, Shift leader, DCS, ECS operators)
- Teaching & Outreach
- Summer student program and outreach activities

 $D = \frac{\left|\sum_{i} p_t^i\right|}{\sum_{i} |p_t^i|}|_{\eta > 0},$

Data.inle0.0

0.3

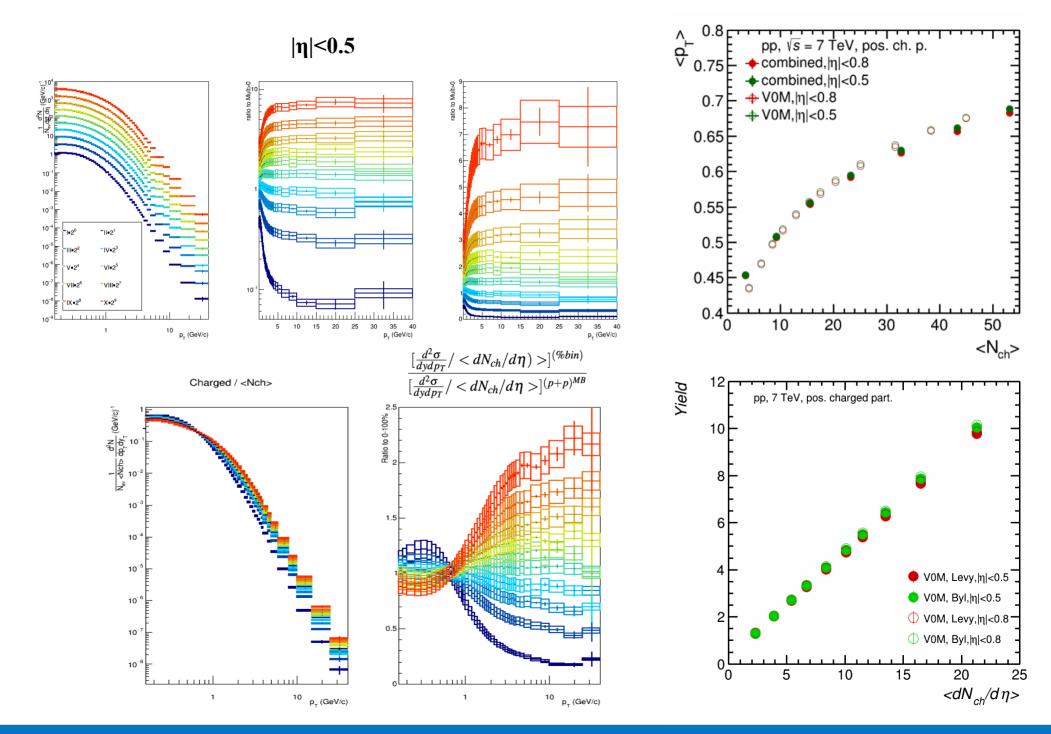
0.25

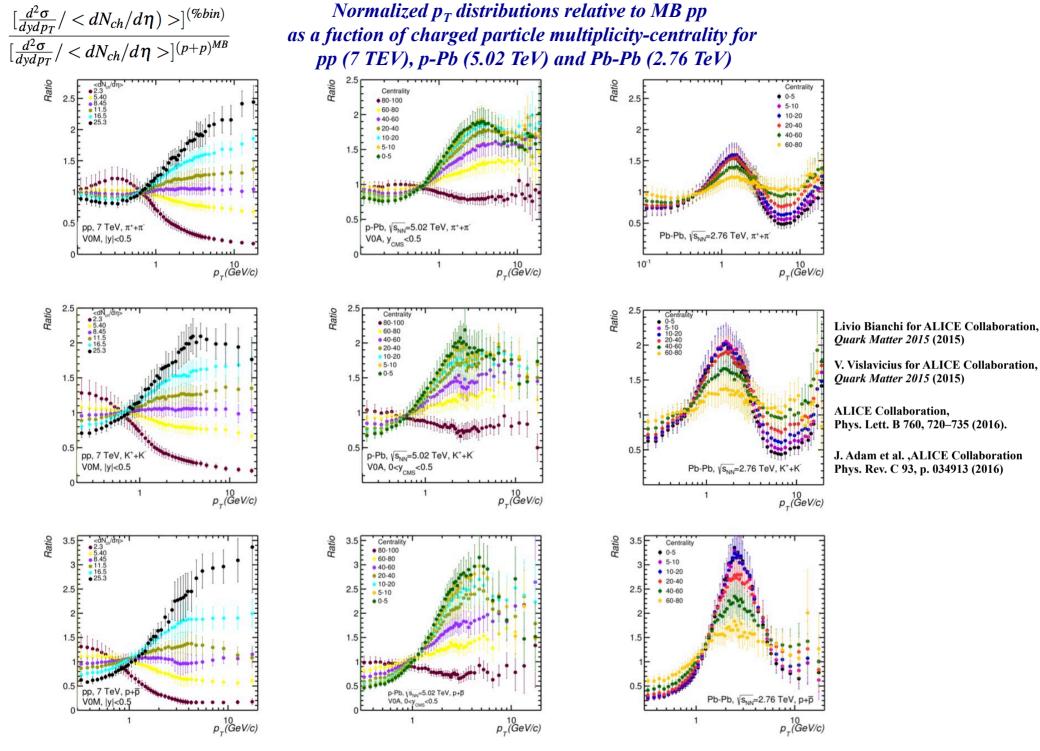

0.35

0.4

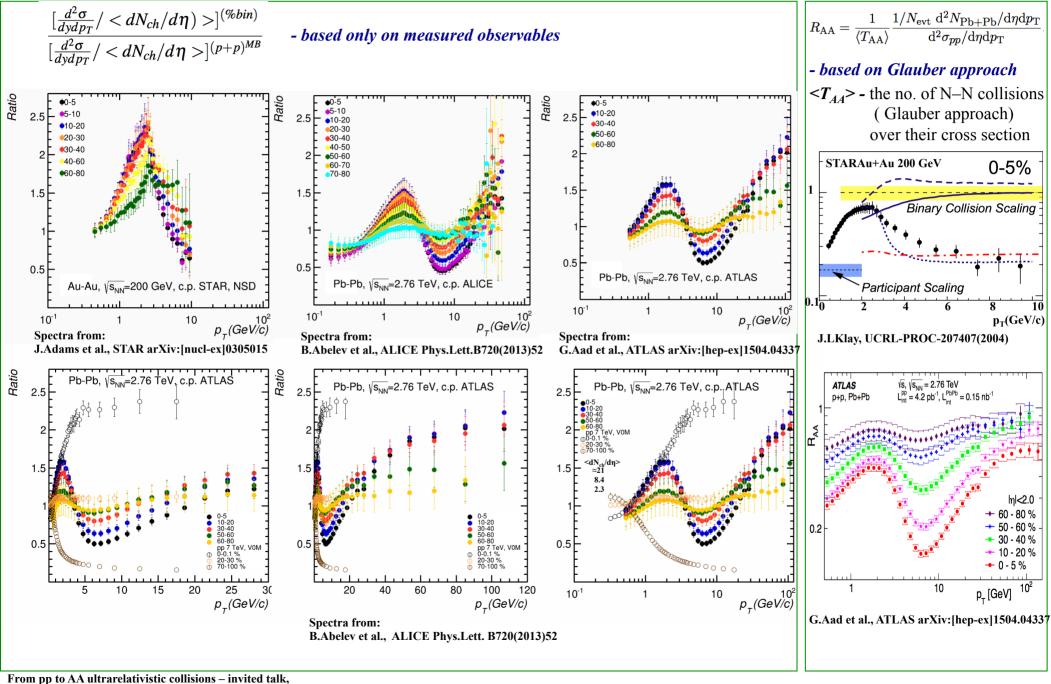
0.45

0.13

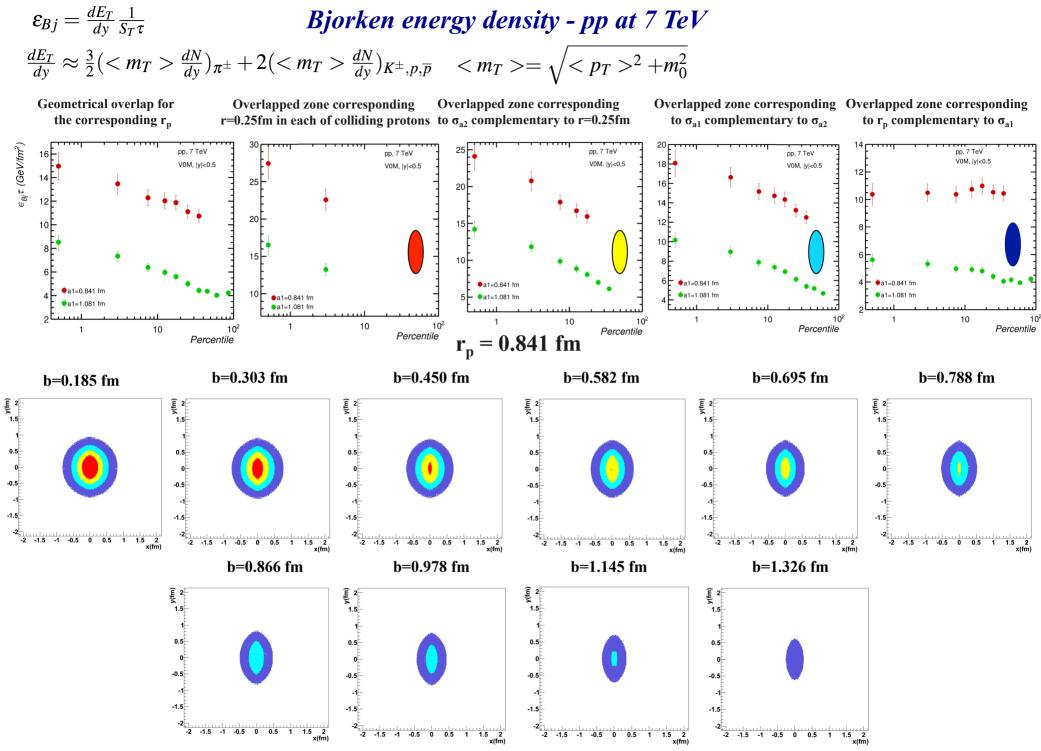

pp (*a*) 7 *TeV* – *identified charged hadrons Charged particles multiplicity* & *event shape*



0.5 <β_T> 1.5

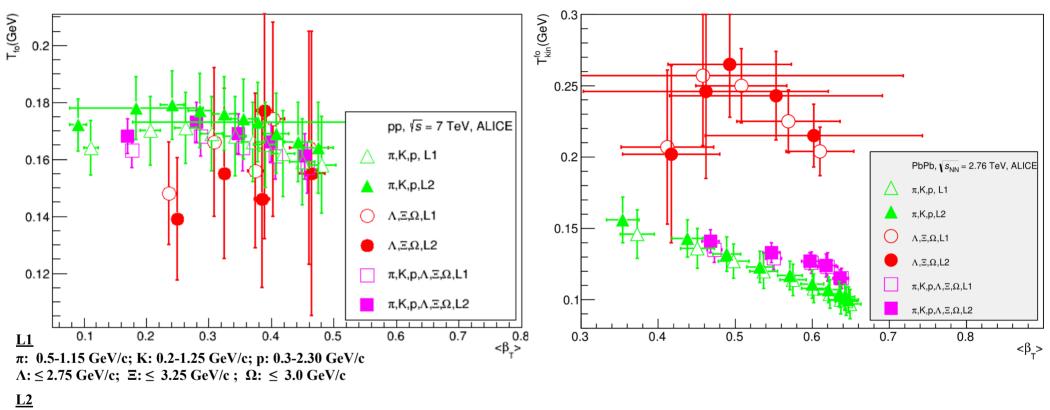

2.5 P.

pp @ 7 TeVCharged particles p_T spectra & $< p_T >$ - multiplicity dependence



From pp to AA ultrarelativistic collisions – invited talk, CARPATHIAN SUMMER SCHOOL OF PHYSICS 2016, Exotic Nuclei and Nuclear / Particle Astrophysics (VI). Physics with small accelerators, June 26 - July 09, 2016, Sinaia, Romania Ratios of normalized charged particles p_T distributions relative to MB pp as a function of charged particle multiplicity-centrality for Au-Au (0.2 TeV), Pb-Pb (2.76 TeV) compared with R_{AA}

CARPATHIAN SUMMER SCHOOL OF PHYSICS 2016, Exotic Nuclei and Nuclear / Particle Astrophysics (VI). Physics with small accelerators, June 26 - July 09, 2016, Sinaia, Romania


From pp to AA ultrarelativistic collisions - invited talk,

CARPATHIAN SUMMER SCHOOL OF PHYSICS 2016, Exotic Nuclei and Nuclear / Particle Astrophysics (VI). Physics with small accelerators, June 26 - July 09, 2016, Sinaia, Romania

BGBW - fits

pp 7 TeV

Pb-Pb 2.76 TeV

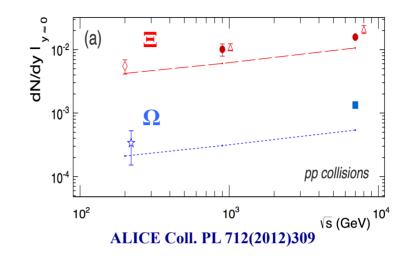
π: 0.5-1.35 GeV/c; K: 0.2-1.65 GeV/c; p: 0.3-2.45 GeV/c Λ: ≤ 2.50 GeV/c; Ξ: ≤ 2.70 GeV/c; Ω: ≤ 3.40 GeV/c

From pp to AA ultrarelativistic collisions - invited talk,

CARPATHIAN SUMMER SCHOOL OF PHYSICS 2016, Exotic Nuclei and Nuclear / Particle Astrophysics (VI). Physics with small accelerators, June 26 - July 09, 2016, Sinaia, Romania

Core-Corona effect (1st order approximation !)

pp collisions

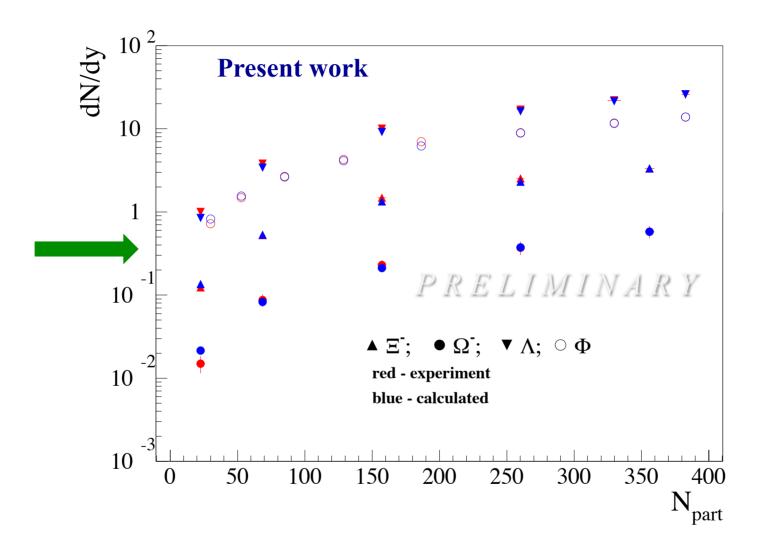

$$M^{i}(N_{part}) = N_{part}[f(N_{core}) \cdot M^{i}_{core} + (1 - f(N_{core})) \cdot M^{i}_{corona}]$$

 $M_{corona}^{i} = \frac{1}{2} \frac{dn^{i}}{dy}\Big|_{y=0}^{pp} - taken from pp \ 7 \ TeV \ !!!$

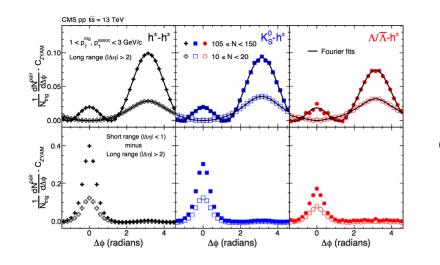
$$M_{core}^{i} = \frac{1}{N_{part} \cdot f(N_{core})} \{ \frac{dn^{i}}{dy} |_{60-80\%} - (1 - f(N_{core})) \frac{1}{2} \frac{dn^{i}}{dy} |_{y=0}^{pp} \}$$

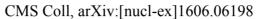
 $1 - f(N_{core})$ - fraction of nucleons suffering single collisions

 N_{part} & (1 - f(N_{core})) estimated by Glauber MC

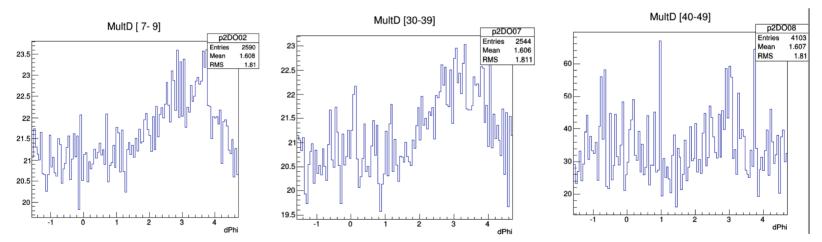

Pb+Pb collision @ 2.76 TeV

			0–5%	5–10%	10–20% 20–40%		% 40–60%	60-80%	80–90%	
Λ	dN/dy		26 ± 3	22 ± 2	17 ± 2	10 ± 1	3.8 ± 0.4	1.0 ± 0.1	0.21 ± 0.03	
Λ	$p_{\rm T}$ < 0.6 GeV/ c frac.		10%	11%	12%	14%	18%	24%	32%	
K _S ⁰	dN/dy		110 ± 1	$0 90 \pm 6$	68 ± 5	39 ± 3	14 ± 1	3.9 ± 0.2	0.85 ± 0.09	
ĸs	$p_{\rm T}$ < 0.4 GeV/ c frac.		20%	21%	21%	23%	25%	31%	33%	
Ratio dA		$V/dy \Lambda/K_S^0$	0.24 ± 0.24	02 0.24 ± 0.02	0.25 ± 0.02	$0.25\pm0.$	$0.02 0.26 \pm 0.03$	0.25 ± 0.02	0.25 ± 0.02	
Ce	ntrality	0-10%		10-20% 20-40%		%	40-60%	60-80%		
$\langle N_{\rm part} \rangle$		356.1 ± 3.6		260.1 ± 3.9	157.2 ± 3.1		68.6 ± 2.0	22.5 ± 0.8		
Ξ		$3.34 \pm 0.06 \pm 0.24$		$2.53 \pm 0.04 \pm 0.18$	1.49 ± 0.02	± 0.11	$0.53 \pm 0.01 \pm 0.04$	0.124 ± 0	$0.124 \pm 0.003 \pm 0.009$	
$\overline{\Xi}^+$		$3.28 \pm 0.06 \pm 0.23$		$2.51 \pm 0.05 \pm 0.18$	± 0.18 1.53 $\pm 0.02 \pm 0.11$		$0.54 \pm 0.01 \pm 0.04$	0.120 ± 0	$0.120 \pm 0.003 \pm 0.008$	
$\Xi^{-} + \overline{\Xi}^{+}$ Ω^{-} $\overline{\Omega}^{+}$ $\Omega^{-} + \overline{\Omega}^{+}$		$6.67 \pm 0.08 \pm 0.47$		$5.14 \pm 0.06 \pm 0.36$	3.03 ± 0.03	± 0.22	$1.07 \pm 0.01 \pm 0.08$	0.240 ± 0	$0.240 \pm 0.006 \pm 0.019$	
		$0.58 \pm 0.04 \pm 0.09$		$0.37 \pm 0.03 \pm 0.06$	0.23 ± 0.01	± 0.03 0	$0.087 \pm 0.005 \pm 0.014$	$0.015 \pm 0.002 \pm 0.003$		
		$0.60 \pm 0.05 \pm 0.09$		$0.40 \pm 0.03 \pm 0.06$	$0.25 \pm 0.01 \pm 0.03$		$0.082 \pm 0.005 \pm 0.013$	0.017 ± 0	$0.017 \pm 0.002 \pm 0.003$	
		$1.19 \pm 0.06 \pm 0.19$		$0.78 \pm 0.04 \pm 0.15$	$0.48 \pm 0.02 \pm 0.08$		$0.170 \pm 0.007 \pm 0.029$	9 0.032 ± 0	$0.032 \pm 0.003 \pm 0.005$	

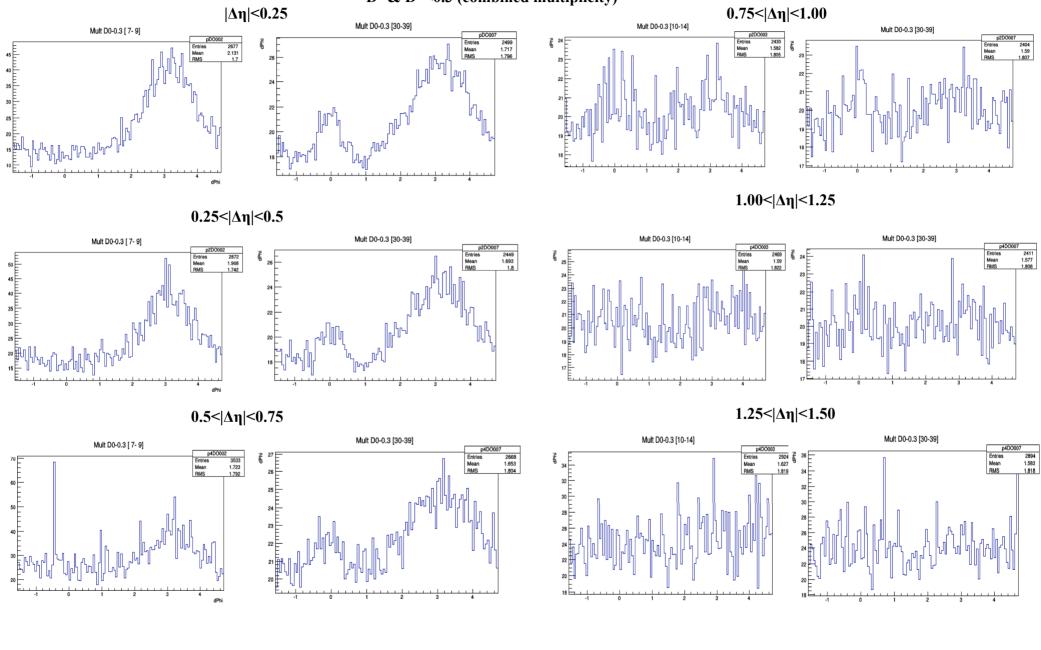

ALICE Coll. PRL 111(2013)222301


ALICE Coll. PL 728(2014)216

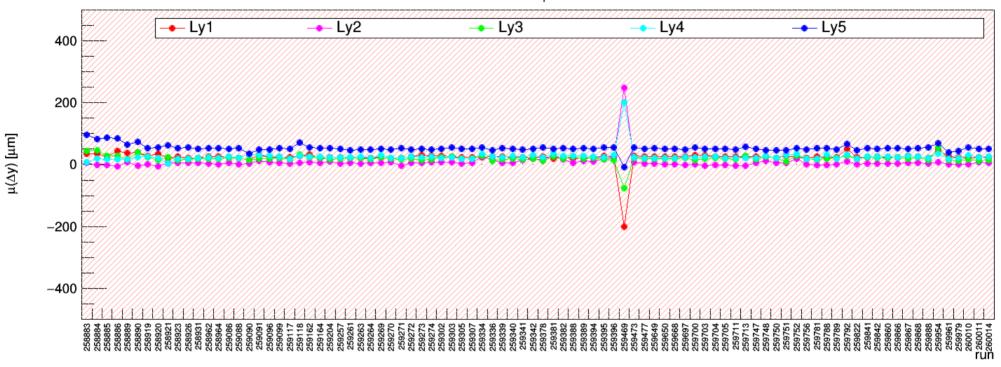
Core-Corona effect (1st order approximation !)


Two particle correlations

Preliminary our analysis

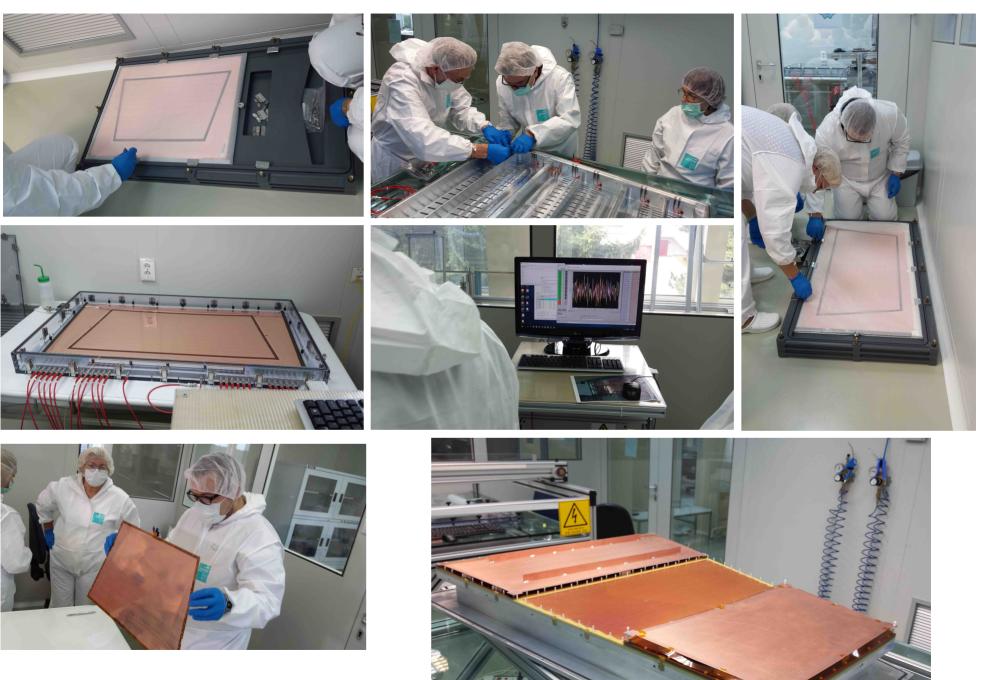

1.25<|Δη|<1.5 (combined multiplicity)

Two particle correlations


Preliminary our analysis

D⁺ & D⁻ <0.3 (combined multiplicity)

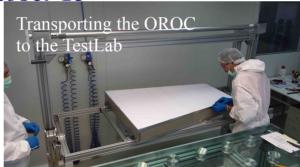
TRD-QA


TRD tracklet r-ø shift

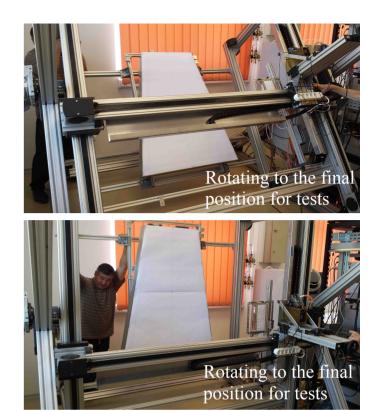
An overview of the TPC-TRD tracklet to track shift in five layers of the ALICE-TRD

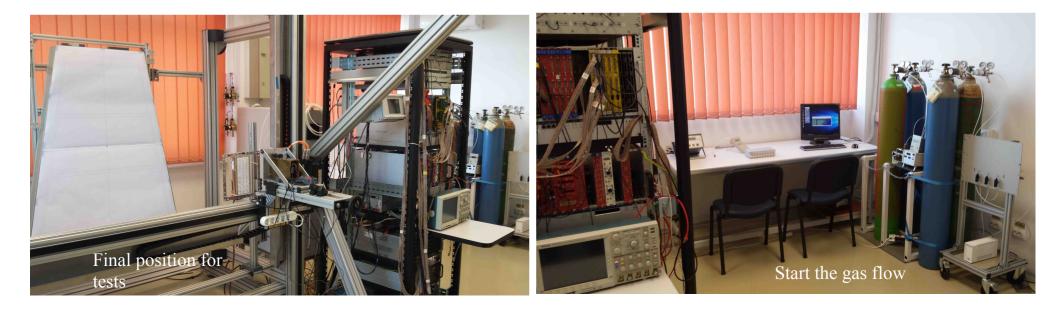
Presentations in 19 TRD weekly meetings

ALICE-TPC Upgrade HPD – October 5-6

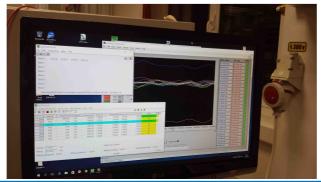


Mounting the OROC On the transport device



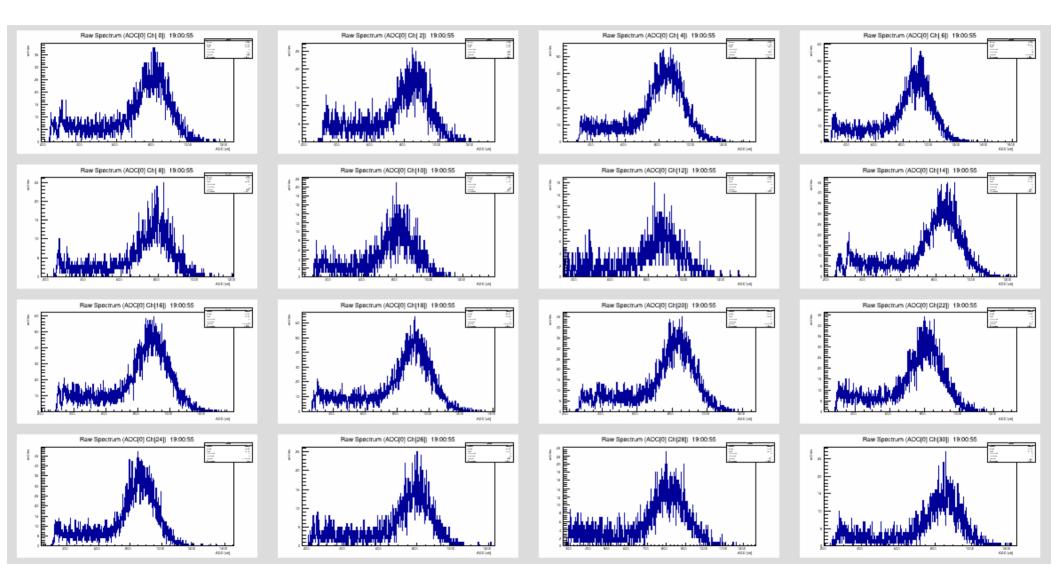


- Finalized HV cabling

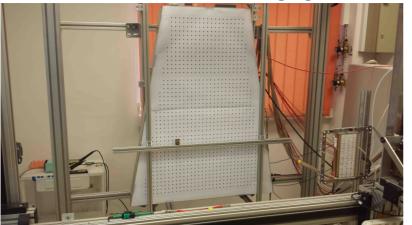


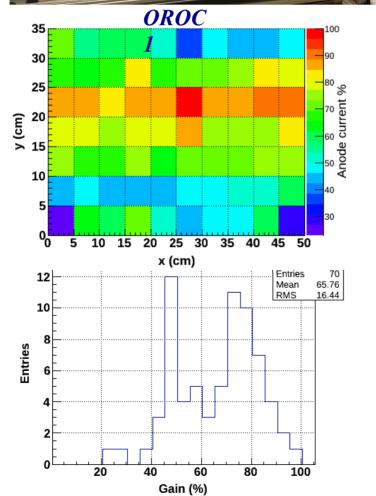
- Finalized the coupling of FEE - FASP-02 (CBM Annual Report p.82 (2014))

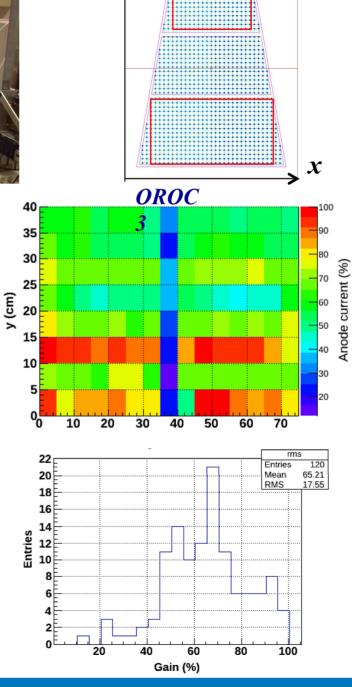
- Finalized ⁵⁵Fe holding device



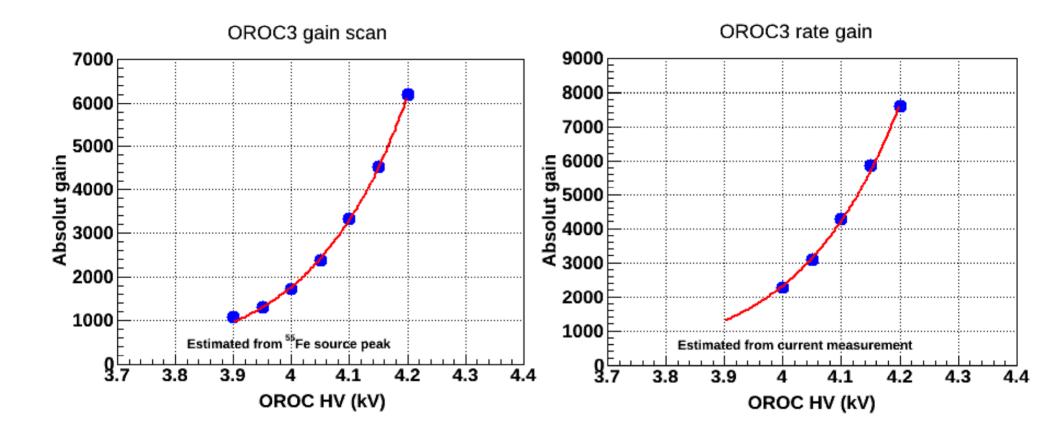
- HV conditioning

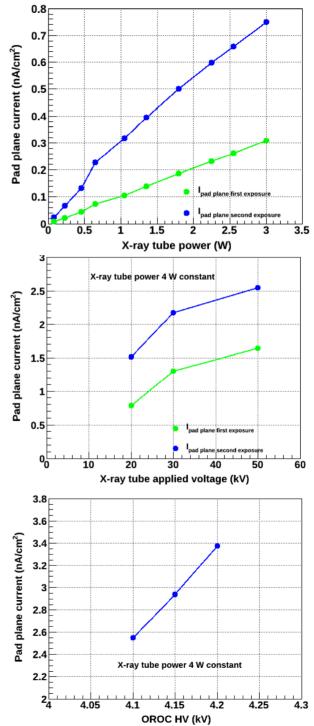



October 18 ⁵⁵Fe spectra on 16 OROC3 pads

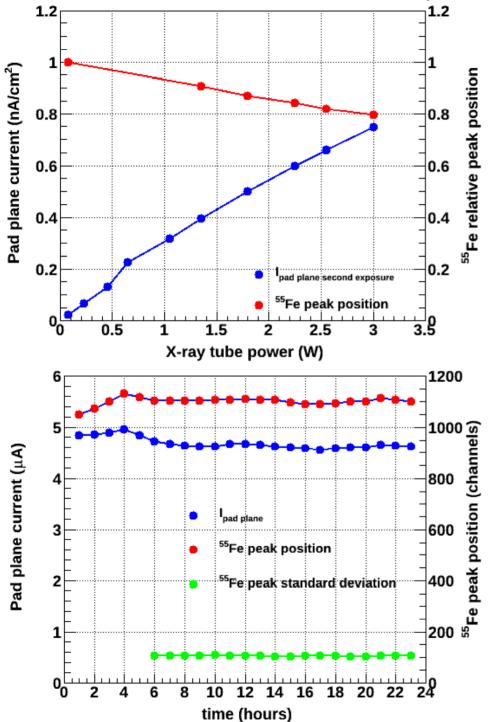


y

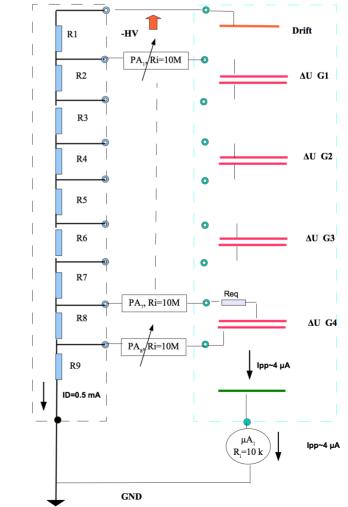



October 19-27

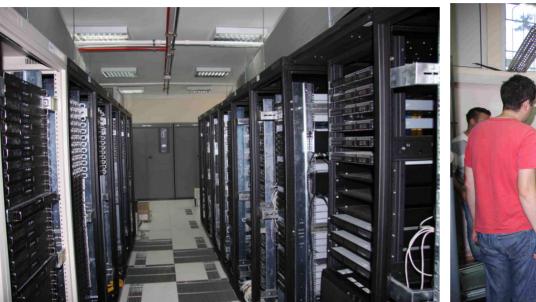
OROC gain scan



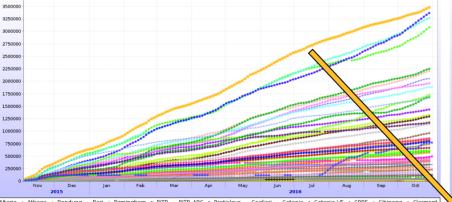
October 19-27 OROC X-ray tube exposure - rate scan

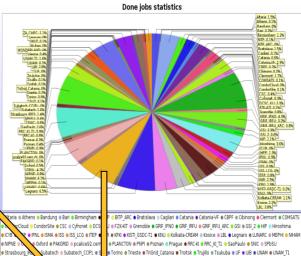


October 19-27 OROC X-ray tube exposure - rate scan


E (V/cm)	D (cm)	ΔU (V)	l (mA)	P (mW)	R (ΚΩ)	
400	1.1	440	0.5	220	880	R1-Drift
		270	0.5	135	540	R2 - T1
4000	0.2	800	0.5	400	1600	R3
		230	0.5	115	460	R4 - T2
4000	0.2	800	0.5	400	1600	R5
		288	0.5	144	576	R6 – T3
100	0.2	20	0.5	10	40	R7
		359	0.5	179.5	718	R8 – T4
4000	0.2	800	0.5	400	1600	R9– IND

Computing


NIHAM Tier2 component of ALICE GRID


NAF (Niham Analysis Facility)

Done Jobs

+ Altaria + Athens + Bandung -- Ban + Birmingham + BITP + BITP + BITP / ARC + Bratislava -- Cagilan + - Catania + - Catania + Catania +

Software development for an efficient and flexible local data analysis

Analysis - efficiencies, contaminations multiplicity & event shape - two-particles correlations

6.7% of Tier2 contributions

Vienna • WOND

Wuhan 🔵 WUT 😐 Yerev

Papers and talks in the last year

Papers

- Particle identification in ALICE: a Bayesian approach, ALICE Collaboration, Eur. Phys. J. Plus 131 (2016) 168.
- Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, ALICE Collaboration, Phys. Lett. B 760 (2016) 720
- Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV, ALICE Collaboration,JHEP 09 (2016) 028
- Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC, ALICE Collaboration, Eur. Phys. J. C 76 (2016) 86
- Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, ALICE Collaboration, arXiv: 1605.02035
- Higher harmonic flow coefficients of identified hadrons in Pb--Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, ALICE Collaboration, arXiv:1606.06057 ; CERN-EP-2016-159
- Jet-like correlations with neutral pion triggers in pp and central Pb-Pb collisions at 2.76 TeV, ALICE Collaboration, arXiv:1608.07201; CERN-EP-2016-195
- D-meson production in p–Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV and in pp collisions at \sqrt{s} =7 TeV, ALICE Collaboration, arXiv:1605.07569; CERN-EP-2016-127
- Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, ALICE Collaboration, arXiv: 1604.07663v1 CERN-EP-2016-102

+ co-authors to 32 ALICE papers

Conferences

- Multiplicity dependence of light flavour hadrons in small systems with the ALICE experiment HQ2016: Hot Quarks 2016 (South Padre Island, TX, USA, 2016-09-12)
- Multiplicity dependence of identified particle production in proton-proton collisions measured with ALICE, XXXVII Encontro Nacional de FÌsica de PartÌculas e Campos (Natal, Rio Grande doNorte, Brasil, 2016-09-03)
- Multiplicity dependence of light flavor hadron production in proton-proton collisions measured with ALICE, XII Quark Confinement and the Hadron Spectrum (Thessaloniki, Greece, 2016-08-29)
- Strangeness and light flavor production as a function of multiplicity in proton-proton collisions measured with ALICE, 38th International Conference on High Energy Physics (Chicago, USA, 2016-08-03)
- Identified particle production in pp collisions at 7 and 13 TeV measured with ALICE Strangeness in Quark Matter 2016 (UC Berkeley, 2016-06-27)
- Multiplicity dependence of light flavour hadrons in small systems with the ALICE experiment at LHC, XV Edizione di IFAE Incontri di Fisica delle Alte Energie (Genova, 2016-03-30)
- Multiplicity dependence of identified hadrons production in pp collisions at \$sqrt_{s}\$ = 7 TeV in the ALICE at LHC, The 6th Asian Triangle Heavy-Ion Conference (India International Center, New Delhi, India, 2016-02-15)
- Search for collective phenomena in high multiplicity pp and p-Pb collisions with ALICE, QCD Challenges at the LHC: from pp to AA (Taxco Guerro Mexico, 2016-01-18)
- From pp to AA ultrarelativistic collisions invited talk,
 M. Petrovici, C. Andrei, I. Berceanu, A. Herghelegiu, A. Pop, M.Tarzila
 CARPATHIAN SUMMER SCHOOL OF PHYSICS 2016
 Exotic Nuclei and Nuclear / Particle Astrophysics (VI). Physics with small accelerators, June 26 July 09, 2016, Sinaia, Romania
- Multiplicity dependence of identified particle production in pp collisions Surch for collective phenomena (presentation including results from ALICE, ATLAS and CMS Collaborations) Cristian Andrei, LHC days in Split 2016, 19-24 September, Split, Croatia

Papers and talks in the last year

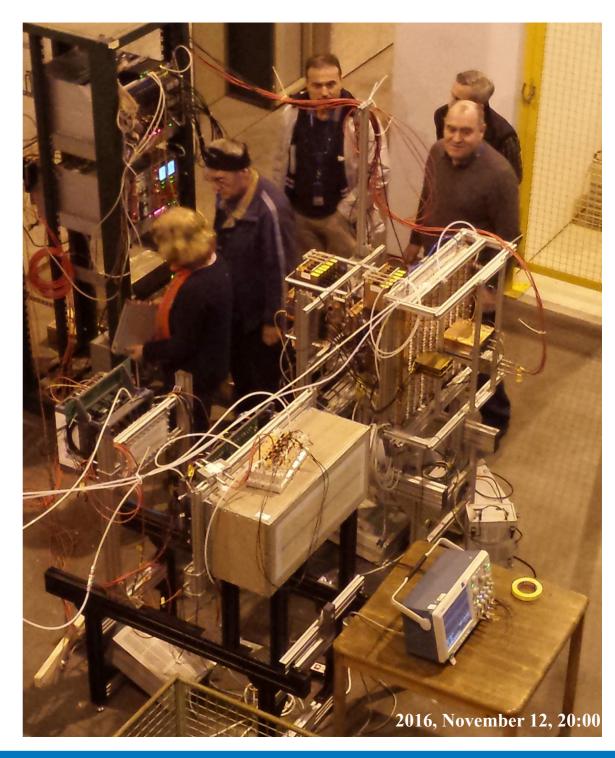
ALICE PAGs and PWG

TPC U&P

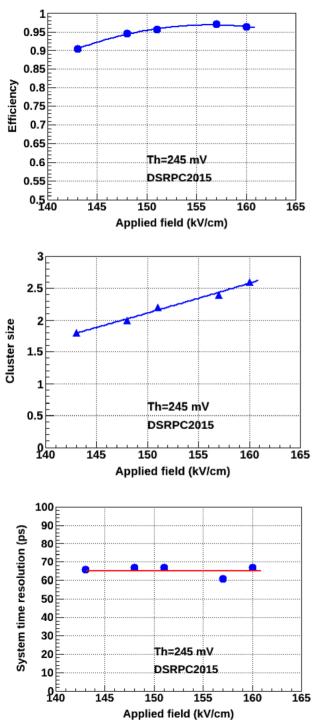
- Charged hadron pt-spectra versus multiplicity pp 7 TeV, Spectra weekly meeting, 18 January 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Charged particle spectra 7 TeV pp versus mult, SPECTRA Weekly Meeting, 1 February 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Discussion on Spectra Modification, PID Spectra in pp-vs-mult: PC Meeting, 8 February 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop
- Update on charged hadron pT-spectra, SPECTRA Weekly Meeting, 22
- February 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Discussion on Spectra Modification, PID Spectra in pp-vs-mult: PC Meeting, 22 February 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop
- -Charged hadron pT-spectra versus multiplicity, SPECTRA Weekly Meeting, 29 February 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Discussion on Spectral Shapes and Boost-like Features, PID Spectra in pp-vsmult: PC Meeting, 19 April 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop
- Update on the Inclusive Charged Analysis, PID Spectra in pp-vs-mult: PC Meeting, 30 August 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Multiplicity dependence of identified particle production in pp collisions (LHC days in Split), ALICE Hard Probes 2016 rehearsals, 16 September 2016, C. Andrei
- Core-corona studies, PID Spectra in pp-vs-mult: PC Meeting, 20 September 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop
- The core-corona approach, PWG-LF meeting, 3 October 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop
- Analysis update: charged particles pp @ 7 TeV, Spectra weekly meeting, 10 October 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- Unidentified Analysis Update, PID Spectra in pp-vs-mult: PC Meeting, 21 October 2016, A. Herghelegiu, C. Andrei, I. Berceanu, A. Bercuci, M. Petrovici, A. Pop
- -Core-corona studies, PID Spectra in pp-vs-mult: PC Meeting, 21 October 2016, M.Petrovici, C. Andrei, I. Berceanu, A. Bercuci, A. Herghelegiu, A. Pop

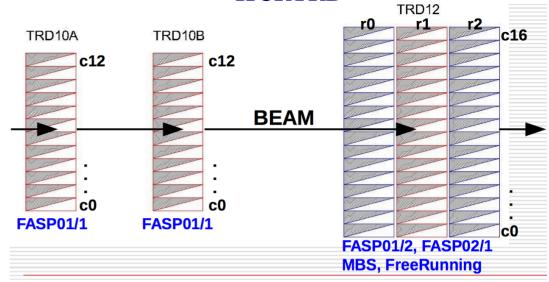
- Status in Bucharest, TPC Upgrade planning meeting: pre-production, 4 February 2016, M. Petris, M. Petrovici
- Status in Bucharest, TPC Upgrade plenary meeting, 7 June 2016, M. Petrovici
- In the last period regular presentations in the weekly TPCU&P meetings

TRD-QA

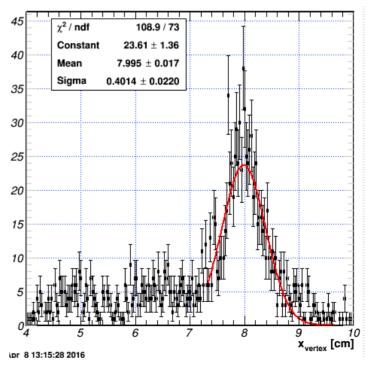

- QA of latest productions, TRD Weekly Meeting, 18 January 2016, M. Tarzila
- TRD, ALICE QA meeting, 19 January 2016, M. Tarzila
- RM Report, RC weekly meeting, 12 April 2016, M. Tarzila
- TRD, ALICE QA meeting, 26 April 2016, M. Tarzila
- TRD, ALICE QA meeting, 3 May 2016, M. Tarzila
- TRD, ALICE QA meeting, 11 May 2016, M. Tarzila
- TRD, ALICE QA meeting, 17 May 2016, M. Tarzila
- Status Report on TRD QA, TRD Weekly Meeting, 27 May 2016, M. Tarzila
- TRD, ALICE QA meeting, 24 May 2016, M. Tarzila
- TRD, ALICE QA meeting, 8 June 2016, M. Tarzila
- TRD, ALICE QA meeting, 14 June 2016, M. Tarzila
- TRD, ALICE QA meeting, 21 June 2016, M. Tarzila
- TRD, ALICE QA meeting, 28 June 2016, M. Tarzila
- TRD, ALICE QA meeting, 5 July 2016, M. Tarzila
- TRD, ALICE QA meeting, 13 July 2016, M. Tarzila
- TRD, ALICE QA meeting, 27 July 2016, M. Tarzila

Further activities





Further activities


HCRMGMSRPC

HCRTRD

Interaction point reconstruction

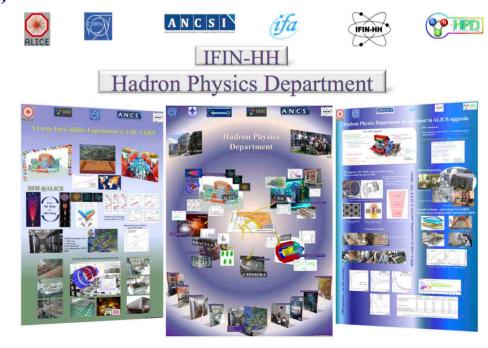
Outreach

Summer Student Program

Winners of International Physics Olympiad

Outreach

- "Engineering Excellence in Basic Research" M. Petrovici, DHBW Mosbach, February 4, 2016


Ihr Weg zur DHBW Mosbach

tergensering excellence in Bearg Resear Referent: Prof. Dr. Milhal Petrovici Donnerstag, 04.02.2016, 18 Uhr Audimax der Dualen Hochschule, Gebäude E

Einladung zum Studium Generale

- ALICE Matters 31 August 2016
- Numerous visits of Romanian and foreign delegations, gymnasium pupils, students of the Romanian Physics Faculties network
- Presentation and Posters on the occasion of Romania becoming full member at CERN

- Poster at Researchers Night, September 2016

Scientific objectives for the next year

- Event shape selection based on different event shape global variables
- Detailed studies of the dependence of corrections applied to raw spectra on the event shape global variables and their selection power
- Two particle correlation studies as a function of charged particle multiplicity and event shape
- Substantial statistics will be generated based on HIJING and EPOS models and comparison with experimental results
- Phenomenological estimates of Core-Corona effects in p-p collisions
- Contribution to the detector operation in Run2
- TPC-OROC assembling and tests
- Operating NIHAM data center component of ALICE GRID at its standard efficiency
- Outreach activities
- Summer Student Program

They are the main actors !

(CERN)

FAI

http://niham.nipne.ro