Isospin-symmetry-breaking effects in A~70 nuclei within beyond-mean-field approach

A. PETROVICI

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

Outline

• complex EXCITED VAMPIR beyond-mean-field model

- isospin symmetry in proton-rich A~70 nuclei
 - shape-coexistence and isospin-symmetry-breaking effects on isovector triplets:
 Coulomb energy differences (CED)
 mirror energy differences (MED)
 triplet energy differences (TED)
 triplet displacement energy (TDE)
 - proton-neutron pairing correlations and competing superallowed Fermi and Gamow-Teller β -decay (70 Kr 70 Br , 66 Se 66 As)

Characteristic features of proton-rich A~70 nuclei

- shape transition, shape coexistence, shape mixing
- isospin mixing
- competing T=0 and T=1 pairing correlations
- drastic changes in structure with particle number, spin, excitation energy

Open problems for theory

- realistic effective Hamiltonians and beyond-mean-field methods
- unitary treatment of structure phenomena at low and intermediate spins and β -decay

complex VAMPIR model family

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation
- * The models allow to use rather large model spaces and realistic effective interactions

complex VAMPIR - variational approach to the nuclear many-body problem

with symmetry projection before variation

Effective many-body Hamiltonian

$$\hat{H} = \sum_{i=1}^{M} \varepsilon(i) \mathbf{c}_{i}^{\dagger} \mathbf{c}_{i} + \frac{1}{4} \sum_{i,k,r,s=1}^{M} v(ikrs) \mathbf{c}_{i}^{\dagger} \mathbf{c}_{k}^{\dagger} \mathbf{c}_{s} \mathbf{c}_{r}$$

Hartree-Fock-Bogoliubov transformation

$$\begin{pmatrix} a^{\dagger} \\ a \end{pmatrix} = F \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix} = \begin{pmatrix} A^{T} & B^{T} \\ B^{\dagger} & A^{\dagger} \end{pmatrix} \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix}$$

$$a^{+}_{\alpha} = \sum_{i=1}^{M} (A_{i\alpha}c^{+}_{i} + B_{i\alpha}c_{i})$$

$$|i\rangle \equiv |\mathbf{n}_{i}\mathbf{l}_{i}\mathbf{j}_{i}; \mathbf{m}_{i}\tau_{i}\rangle$$

$$a_{\alpha} = \sum_{i=1}^{M} (B^{*}_{i\alpha}c^{+}_{i} + A^{*}_{i\alpha}c_{i})$$

Quasi-particle vacuum

$$|F\rangle = \prod_{\alpha=1}^{M'} a_{\alpha}|0\rangle \quad \text{with} \quad \left\{ \begin{array}{cc} a_{\alpha}|0\rangle \neq 0 & \text{for } \alpha = 1, ..., M' \leq M \\ a_{\alpha}|0\rangle = 0 & \text{else} \end{array} \right\}$$

Symmetry projection before variation

 $\hat{\Theta}^{s}_{MK} \equiv \hat{P}(I; MK)\hat{Q}(N)\hat{Q}(Z)\hat{p}(\pi)$ $\hat{p}(\pi) \equiv \frac{1}{2} \left(1 + \pi \hat{\Pi} \right)$ $\hat{Q}(N_{\tau}) \equiv \frac{1}{2\pi} \int_{0}^{2\pi} d\phi_{\tau} \exp\{i\phi_{\tau}(N_{\tau} - \hat{N}_{\tau})\})$ $\hat{P}(I;MK) \equiv \frac{2I+1}{8\pi^2} \int d\Omega D_{MK}^{I} (\Omega) \hat{R}(\Omega)$ $|\psi(F^s); sM\rangle = \sum_{K=I}^{+I} \hat{\Theta}^s_{MK} |F^s\rangle f^s_K$ ~

$$\psi(F^s); sM \rangle = \frac{\Theta^s_{M0} |F^s\rangle}{\sqrt{\langle F^s | \hat{\Theta}^s_{00} |F^s \rangle}}$$

Building blocks of the HFB vacuum

$$|F\rangle = \{ \prod_{m=1/2}^{m_{max}} (\prod_{\alpha}^{(m)} [u_{\alpha} + v_{\alpha} b_{\alpha}^{\dagger} b_{\alpha}^{\dagger}]) \} |0\rangle$$

$$b_{\alpha}^{\dagger} = \sum_{\tau_{i}, n_{i}, l_{i}, j_{i}}^{(m_{\alpha} > 0)} D_{i\alpha}^{*} c_{i}^{\dagger}$$

$$[c_{1}^{\dagger} c_{k}^{\dagger}]_{TT_{z}}^{IM} \equiv \sum_{m_{i} m_{k} \tau_{i} \tau_{k}}^{(j_{i} j_{k} I | m_{i} m_{k} M)} (\frac{1}{2} \frac{1}{2} T | \tau_{i} \tau_{k} T_{z}) c_{i}^{\dagger} c_{k}^{\dagger}$$

$$\boldsymbol{b}_{\alpha}^{\dagger}\boldsymbol{b}_{\bar{\alpha}}^{\dagger} = \sum_{\tau=p,n} \sum_{\underline{\mathbf{i}}\leq\underline{\mathbf{k}}}^{(m_{\alpha}\tau)} \left[1 + \delta(\mathbf{i},\underline{\mathbf{k}})\right]^{-1} \sum_{I} (-)^{j_{k}+l_{k}-m_{\alpha}} (j_{i}j_{k}I|m_{\alpha}-m_{\alpha}0)$$

 $\times \{ [Re(D_{i_{\tau}\alpha}^* D_{k_{\tau}\alpha})[1+(-)^{l_i+l_k+I}] + iIm(D_{i_{\tau}\alpha}^* D_{k_{\tau}\alpha})[1-(-)^{l_i+l_k+I}]][c_1^{\dagger}c_{k}^{\dagger}]_{12\tau}^{I_0} \}$

$$+\sum_{\underline{i}}^{(m_{\alpha}p)}\sum_{\underline{k}}^{(m_{\alpha}n)}\sum_{IT}(1/21/2T) - 1/21/20)(-)^{j_{k}+l_{k}-m_{\alpha}}(j_{i}j_{k}I|m_{\alpha}-m_{\alpha}0)$$

 $\times \{ [Re(D_{i_{p\alpha}}^{*}D_{k_{n\alpha}})[1+(-)^{l_{i}+l_{k}+I}] + iIm(D_{i_{p\alpha}}^{*}D_{k_{n\alpha}})[1-(-)^{l_{i}+l_{k}+I}]][c_{1}^{\dagger}c_{k}^{\dagger}]_{T0}^{I_{0}} \}$

Beyond mean field variational procedure

complex VAMPIR

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle} \qquad |\psi(F_{1}^{s}); sM \rangle = \frac{\hat{\Theta}_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

complex EXCITED VAMPIR

$$\begin{split} |\psi(F_{2}^{s});sM\rangle &= \hat{\Theta}_{M0}^{s} \left\{ |F_{1}^{s}\rangle\alpha_{1}^{2} + |F_{2}^{s}\rangle\alpha_{2}^{2} \right\} \\ |\psi(F_{i}^{s});sM\rangle &= \Sigma_{j=1}^{i} |\phi(F_{j}^{s})\rangle \alpha_{j}^{i} \quad \text{for} \quad i = 1,...,n-1 \\ |\phi(F_{i}^{s});sM\rangle &= \Theta_{M0}^{s} |F_{i}^{s}\rangle \\ |\psi(F_{n}^{s});sM\rangle &= \Sigma_{j=1}^{n-1} |\phi(F_{j}^{s})\rangle \alpha_{j}^{n} + |\phi(F_{n}^{s})\rangle \alpha_{n}^{n} \\ \alpha_{n}^{n} &= \langle \phi^{n} | [1 - \Sigma_{j,l=1}^{n-1} |\phi^{j}\rangle (A^{-1})_{jl} \langle \phi^{l} |] |\phi^{n}\rangle^{-1/2} \\ A_{jl} &\equiv \langle \phi^{j} |\phi^{l}\rangle \quad i, l = 1,...,n-1 \end{split}$$

 $\alpha_{j}^{n} = -\sum_{l=1}^{n-1} (A^{-1})_{jl} \langle \phi^{l} | \phi^{n} \rangle \alpha_{n}^{n}$

$$\hat{S} \equiv \sum_{j,l=1}^{n-1} |\phi^j\rangle (A^{-1})_{jl} \langle \phi^l |$$

$$E_1^n \equiv \langle \psi^n | \hat{H} | \psi^n \rangle = \frac{\langle \phi^n | (1 - \hat{S}) \hat{H} (1 - \hat{S}) | \phi^n \rangle}{\langle \phi^n | (1 - \hat{S}) | \phi^n \rangle}$$

$$(H - E^{(n)}N)f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

$$|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$$

A~70 mass region

⁴⁰Ca - core model space for both: protons and neutrons $1p_{1/2}$ $1p_{3/2}$ $0f_{5/2}$ $0f_{7/2}$ $1d_{5/2}$ $0g_{9/2}$ (charge-symmetric basis + Coulomb contributions to theπ-spe from the core)

renormalized G-matrix (OBEP, Bonn A)

• *pairing properties enhanced by short range Gaussians for:* T = 1 pp, np, nn channels T = 0, S = 0 and S = 1 channels

• onset of deformation influenced by monopole shifts:

<0g_{9/2} 0f; T=0 |G| 0g_{9/2} 0f;T=0>

<1d_{5/2} 1p; T=0 |G| 1d_{5/2} 1p;T=0>

• Coulomb interaction between valence protons added

Isospin-symmetry-breaking effects on

Coulomb Energy Differences

A= 66,70, 82, 86

Exotic case : A = 70

G. de Angelis et al, Eur. Phys. J. A12 (2001) 51 (⁷⁰Br)

A. M. Hurst et al, Phys. Rev. Lett.98 (2007) 072501 (⁷⁰Se: No evidence for oblate shapes)

J. Ljungvall et al, Phys. Rev. Lett. 100 (2008) 102502 (⁷⁰Se: Evidence for oblate shapes)

complex Excited Vampir: shape mixing and isospin symmetry breaking

A. Petrovici, J. Phys.G: Nucl. Part. Phys. 37 (2010) 064036

complex Excited Vampir results: oblate-prolate mixing specific for each nucleus varying with increasing spin

Shape mixing manifested in the structure of the wave functions

$[\hbar]$	o-mixing	p-mixing	$I[\hbar]$	o-mixing	p-mixing
0_{1}^{+}	55%	39%	0_{1}^{+}	35%	62%
0^{+}_{2}	39%	54%	0^{+}_{2}	59%	34%
0_{3}^{+}		87%	0_3^+		88%
2^{+}_{1}	57%	39%	2^{+}_{1}	41%	57%
2^{+}_{2}	41%	58%	2^{+}_{2}	58%	40%
2^{+}_{3}		92%	$2\overline{\overset{+}{_3}}$		94%
4_{1}^{+}	62%	35%	4_{1}^{+}	41%	56%
4^{+}_{2}	37%	63%	4^{+}_{2}	57%	41%
+3		80(13)%	4_{3}^{+}		94%
6^{+}_{1}	37%	59%	6^{+}_{1}	20%	76%
6^{+}_{2}	61%	37%	6^{+}_{2}	79%	20%
6_{3}^{+}	43%	43%	6^+_3		44(34)(12)%
8_{1}^{+}		91%	8_{1}^{+}		89%
82	93%		8^{+}_{2}	96%	
3		84(10)%	8^{+}_{3}		71(11)(11)%

The amount of mixing for the lowest states in ⁷⁰Se.

The amount of mixing for the lowest states in ⁷⁰Br.

Strong oblate-prolate mixing up to 6⁺ : oblate components dominate the yrast states of ⁷⁰Se, but the yrare states of ⁷⁰Br

Shape mixing revealed by the spectroscopic quadrupole moments

Spectroscopic Q_2^{sp} (in efm^2) of the lowest three

states of spin I of ⁷⁰ Se (effective charges $e_p = 1.2, e_n = 0.2$).			states	states of spin I of $^{70}{\rm Br}$ (effective charges $e_p=1.2,\ e_n=0.2).$			
$I[\hbar]$	I_1	I_2	I_3	$I[\hbar]$	I_1	I_2	I_3
2^{+}	4.5	-7.	-43.7	2^{+}	-6.4	4.6	-44.6
4^{+}	11.5	-16.8	-54.4	4^{+}	-9.8	5.2	-60.8
6+	-17.5	9.5	-54.2	6^+	-39.7	33.7	-62.2
8+	-64.	52.1	-60.	8+	-65.5	59.	-71.4

Spectroscopic $Q_2^{sp} \ ({\rm in} \ efm^2)$ of the lowest three

Precise quadrupole moments for low spin states could clarify the open problem

Shape mixing revealed by the $B(E2; \Delta I = 2)$ strengths

 $B(E2; I \rightarrow I - 2)$ values (in $e^2 fm^4$) for the lowest two bands of ⁷⁰Se (EXVAM). Strengths for secondary branches are given in parentheses (effective charges $e_p = 1.2$, $e_n = 0.2$).

	EXVAM		Exp.	(HFB-based-config.mix.)	
$I[\hbar]$	$o(p)_1$	$p(o)_2$		(Girod et al.)	
2^{+}	492	501 (5)	342 ± 19	549	
4^{+}	713	761	370 ± 24	955	
6+	779 (62)	792 (33)	530 ± 96	1404	
8+	717 (193)	666 (150)			

 $B(E2; I \rightarrow I - 2)$ values (in $e^2 f m^4$) for the lowest two bands of ⁷⁰Br (EXVAM). Strengths for secondary branches are given in parentheses (effective charges $e_p = 1.2$, $e_n = 0.2$).

$I[\hbar]$	$p(o)_1$	$o(p)_2$	
2^+	541	516	
4^{+}	775	756	
6+	820 (60)	777 (44)	
8+	771 (81)	754 (84)	

A = 82, 86 *analogs*

one prolate deformed configuration dominates (>90%) the structure of the yrast states A. Petrovici et al., Phys. Rev. C78 (2008) 064311

New exotic case: A = 66 ?

G. de Angelis, A. Petrovici et al., Phys. Rev. C85 (2012) 034320 P. Ruotsalainen et al., Phys. Rev. C88 (2013) 024320

complex Excited Vampir results: different shape mixing changing with spin

$I[\hbar]$	o-mixing	p-mixing (\mathbf{p}_s)	$I[\hbar]$	o-mixing	p-mixing (\mathbf{p}_s)
$\begin{array}{c} 0_1^+ \\ 0_2^+ \end{array}$	18(2)% 4%	$77(2)(1)\% \\ 82(10)(4)\%$	$0^+_1 \\ 0^+_2$	$rac{15(1)\%}{2(2)\%}$	80(2)(2)% 76 (12)(7)(1)%
$2^+_1 \\ 2^+_2$	$\frac{38\%}{57\%}$	$59(2)\%\ 37(6)\%$	$2^+_1 \\ 2^+_2$	$29\% \\ 64\%$	$rac{68(2)\%}{31(3)(1)(1)\%}$
$4_1^+ \\ 4_2^+$	${32\% \atop 63\%}$	${65(1)\%} \ {33(3)\%}$	$4^+_1 \\ 4^+_2$	$18\% \\ 76\%$	$rac{80(1)\%}{18(5)(1)\%}$
$6^+_1 \\ 6^+_2$	$9\% \\ 82\%$	$90(1)\%\ 9(5)(3)\%$	$\begin{array}{c} 6_1^+ \\ 6_2^+ \end{array}$	$4\% \\ 81\%$	$95(1)\%\ 14(4)\%$

The amount of mixing of the lowest states in 66 Ge.

The amount of mixing of the lowest states in 66 As.

Significant oblate-prolate mixing up to 6⁺: prolate components dominate the yrast states of ⁶⁶Ge and ⁶⁶As

(I) Coulomb energy differences (CED)

$$CED_{J,T} = E^*_{J,T,Tz=0} - E^*_{J,T,Tz=+1}$$

A. Petrovici, J. Phys.G: Nucl. Part. Phys 37 (2010) 064036

* G. de Angelis, A. Petrovici et al., Phys. Rev. C85 (2012) 034320

* P. Routsalainen et al., Phys. Rev. C88 (2013)024320

(II) Mirror Energy Differences(III) Triplet Energy Differences

$$MED_{J,T} = E^*_{J,T,Tz=-1} - E^*_{J,T,Tz=+1}$$

$$TED_{J,T} = E^*_{J,T,Tz=-1} + E^*_{J,T,Tz=+1} - 2E^*_{J,T,Tz=0}$$

A=66 isobaric triplet (⁶⁶Se - ⁶⁶As - ⁶⁶Ge)

(⁶⁶Se, P.Ruotsalainen et al. Phys. Rev. C88 (2013) 041308(R))

Competing β-decays within the A=70 and A=66 isovector triplets and proton-neutron pairing correlations

 70 **Kr** \rightarrow 70 **Br** \rightarrow 70 **Se** : superallowed Fermi β -decay (A. Petrovici et al, Nucl.Phys. A747 (2005) 44)

⁷⁰Kr → ⁷⁰Br: competing superallowed Fermi and Gamow-Teller β-decay (T=0 n-p pairing ???, Iachello, Padova, 1994) (accepted proposals at RIKEN, 2014) ⁷⁰Kr - ⁷⁰Br - ⁷⁰Se: MED, TED (accepted proposal at Jyvaskyla, 2014)

Pair structure analysis

pair number operator

$$\begin{split} \rho_{(M)}^{JTT_{z}\pi} &\equiv \frac{1}{2} \sum_{n_{i}l_{i}j_{i}n_{k}l_{k}j_{k}} \delta((-)^{l_{i}+l_{k}},\pi)(-)^{j_{i}+j_{k}-M}(-)^{1-T_{z}} \\ &\times \sum_{m_{i}m_{k}\tau_{i}\tau_{k}} \langle j_{i}m_{i}j_{k}m_{k}|JM \rangle \langle \frac{1}{2}\tau_{i}\frac{1}{2}\tau_{k}|TT_{z}\rangle c_{n_{i}l_{i}j_{i}m_{i}\tau_{i}}c_{n_{k}l_{k}j_{k}m_{k}\tau_{k}}^{\dagger} \\ &\times \sum_{m_{r}m_{s}} \langle j_{k}-m_{r}j_{i}-m_{s}|J-M \rangle \langle \frac{1}{2}-\tau_{k}\frac{1}{2}-\tau_{i}|T-T_{z}\rangle c_{n_{k}l_{k}j_{k}m_{r}\tau_{k}}c_{n_{i}l_{i}j_{i}m_{s}\tau_{i}} \end{split}$$

A=70 : complex EXCITED VAMPIR results

- ⁷⁰Kr $0^{+}_{II} \rightarrow 49\%$ oblate / 51% prolate $0^{+}_{III} \rightarrow 44\%$ oblate / 56% prolate $0^{+}_{III} \rightarrow 14\%$ oblate / 86% prolate
- ⁷⁰Br lowest 1⁺ states (1.9 MeV, 2.6 MeV, 2.9 MeV) one dominant EXVAM configuration $1^{+}_{I} \rightarrow oblate \quad 1^{+}_{II} \rightarrow prolate \quad 1^{+}_{III} \rightarrow prolate$

No enhancement of proton-neutron T=0 pairing correlations for Gamow-Teller contributing low-lying 1⁺ states (A. Petrovici, Rom. Journ. Phys.58 (2013) 1120)

A=66 : complex EXCITED VAMPIR results

⁶⁶Se $0^{+}_{I} \rightarrow 15\%$ oblate / 85% prolate $0^{+}_{II} \rightarrow 3\%$ oblate / 97% prolate $0^{+}_{III} \rightarrow 34\%$ oblate / 66% prolate ⁶⁶As - lowest 1+ states:

 $1^{+}_{I} \rightarrow oblate \ configuration$ $1^{+}_{II, III, IV} \rightarrow prolate \ mixing$

B(GT): $0^{+}_{gs} \rightarrow 1^{+}_{I}$ (negligible) / 1^{+}_{II} (0.08 $g^{2}_{A}/4\pi$) / 1^{+}_{III} (0.16 $g^{2}_{A}/4\pi$)/ 1^{+}_{IV} (0.37 $g^{2}_{A}/4\pi$)

No enhancement of proton-neutron T=0 pairing correlations for Gamow-Teller contributing low-lying 1⁺ states (preliminary results)

Summary and outlook

complex EXCITED VAMPIR model self-consistently describes

- the interplay between shape-coexistence and isospin-mixing effects on : *CED*, *MED*, *TED* and *TDE* in A~70 isovector triplets
- the possible competition between superallowed Fermi and Gamow-Teller β -decay in A~70 triplets
 - \rightarrow does not support the proposed scenario of enhancement of GT branch to the yrast 1⁺ state in the N=Z odd-odd daughter nucleus as fingerprint of neutron-proton T=0 pairing condensate

The investigations on the structure and dynamics of medium mass isovector triplets are currently

extended taking into account charge dependence in the strong force