

Layout and first test results of new TRD prototypes

Mariana Petris, NIPNE - Bucharest

Outline

- HCRTRD prototypes: short review
- ♦ ⁵⁵Fe source tests
- In beam tests:
 - $\checkmark e/\pi$ discrimination;
 - \checkmark investigation of the rate capability
 - -pulse height and charge
 - -position resolution
- A real size prototype
 - **•** Design and Construction
 - ♦⁵⁵Fe source tests
- Summary and Outlook

CBM Requirements

Interaction rate: 10⁷Hz (~1000 tracks/event)

TRD subdetector – possible scenario:
3 stations @ 4, 6, 8 m from target (3 layers each)

 Highly granular and fast detectors which can stand the high rate environment (up to 10⁵ part/cm² ·sec)

Identification of high energy electrons (γ > 2000); pion rejection factor > 100

Tracking of all charged particles:
 position resolution ~ 200 – 300 μm

HCRTRD - prototype

⁵⁵Fe Source

പ്പ

In Beam Tests

85% Ar + 15% CO₂; HV 1700 V

Readout: PASA (2mV/fC, 1800 e rms) + FADC Converter

Energy Resolution (pad signal): ~8.6 % (σ); ~20 % FWHM Goal of the experiment: detector performance in high counting rate environment

Experimental Setup

- 2 Scintillators (ToF, trigger)
- 2 Si -Strip Detectors (beam profile definition)
 - 2 MWPC GSI (10 x 10 cm²)
 - 1 MWPC NIPNE (24 x 24 cm²)
 - 1 MWPC JINR (10 x 10 cm²)
 - 1 GEM JINR
- Pb glass calorimeter
- FADC readout ; DAQ (MBS)

High Counting Rate Effect

e/π discrimination

protons, p=2 GeV/c

 $\sigma_{pos} = 350 \ \mu m \ @ 16 \ kHz/cm^{2;}$ $\sigma_{pos} = 384 \ \mu m \ @ 100 \ kHz/cm^{2}$ Pad geometry not optimized p=1GeV/c, U = 1900 V, Rohacell HF71 radiator, Gas mixture: 85% Xe + 15% CO2

Pion efficiency:

- 6 layers configuration = 12.5 %
- 10 layers configuration = 2.9 %
- Can be improved using a better radiator from the point of view of the transition radiation yield

Mariana Petris, CBM Collaboration Meeting, March 9 – 13, 2009, GSI Darmstadt

Normalized counts

High Efficiency TRD for High Counting Rate Environment

Goal: to increase the conversion efficiency of the TR in one layer conserving the rate performance and the number of the readout channels of the first prototype .

Solution: mirrored MWPC relative to a common double sided pad-plane electrode.

Double - sided pad readout HCRTRD prototype

Three versions of such a prototype

The first: the double – sided pad readout electrode has been made from PCB of 250 µm thickness.

The third: the double – sided pad readout electrode made from kapton foil of 25 μ m, covered with copper on both sides.

The second: the single – pad readout electrode made from mylar foil of 3 μ m thickness, aluminized on both sides.

⁵⁵Fe source tests

70% Ar + 30% CO₂; HV 1700 V;

Readout: PASA (2mV/fC, 1800 e rms) + ADC Converter

Beam tests

Experimental Setup

New PASA – 16 channels ASIC preamplifier - shaper

 2 Scintillator arrays (ToF, trigger): each array - 4 scintillator paddles (4 x 1 x 0.5 cm³ each)

- 2 Si Strip Detectors (beam profile)
- 3 MWPC–IFIN-HH (18 pads with total area of ~ 22 x 50 cm²)
- 2 MWPC-GSI (32 pads with total area of ~ 56 x 64 cm²)
- 2 MWPC-JINR (active area 40 x 40 cm²)
- 1 GEM–JINR (active area 10 x 10 cm²)
- Cherenkov detector + Pb-glass calorimeter
 - FADC readout ; DAQ (MBS)

H.K. Soltveit, I.Rusanov, J.Stachel, GSI Sci. Rep. 2005-1

e/π discrimination performance

Rohacell Radiator = 4 cm fiber (17 μ m) structure + 2 cm Rohacell foam, 1800 V

Foil Radiator (20/500/120)

1.5 GeV/c; 85%Xe + 15%CO₂

Rate performance

hadrons

electrons

High Counting Rate Effect

 $p = 1.5 \; GeV/c$

• Negligible deterioration of the signal

- A good position resolution of the counter, smaller than 200 µm at low counting rate
- No significant degradation up to 200 kHz/cm2

These results have been obtained in the frame of the

JRA4 - I3HP/FP6 Collaboration:

NIPNE – Bucharest

University of Münster

D.Bartos	M.Petris
I.Berceanu	M. Petrovici
V. Catanescu	V. Simion
A. Herghelegiu	P. Dima
C. Magureanu	A. Radu
D. Moisa	

M. Klein-Bösing A.Wilk J.P.Wessels

GSI – Darmstadt

- A. Andronic
- C. Garabatos
- R. Simon
- J. Hehner
- F. Uhlig

Real Size Prototype

Mariana Petris, CBM Collaboration Meeting, March 9 – 13, 2009, GSI Darmstadt

Three layers per TRD station

Mariana Petris, CBM Collaboration Meeting, March 9 – 13, 2009, GSI Darmstadt

Single cell

390

Readout Pad Plane Electrode

First Version of the Prototype

Next Versions

PCB (650 µm) readout electrode

Copper coated kapton foil (20 μ m)

⁵⁵Fe source tests – PCB version

70% Ar + 30% CO₂

Readout: PASA (2mV/fC, 1800 e rms) + ADC Converter

Summary and Outlook

• The first two High Counting Rate Transition Radiation Detector prototypes fulfills the requirements in terms of:

- position resolution: smaller than 200 μ m;
- pion efficiency: estimated 0.7% for six layers configuration @ p=1.5 GeV/c, regular periodic foil stack radiator (20/500/120), 1800 V anode voltage;
- good performance up to 200 kHz/cm² counting rate.
- We designed and built a real size prototype.
 - •Considering the present thickness of the walls and using a staggered configuration within one layer, one could reach a 76% geometrical efficiency for a polar angle range between 1 - 6 deg;
 - Two dimensional position information in one TRD layer can be accessed by splitting the rectangular pad on diagonal.
 - The first version of this prototype with a PCB double sided readout electrode was tested with the ⁵⁵Fe source.
 - Next versions with much thinner electrodes, transparent for TR, follow to be built and tested.

Summary and Outlook

- Peak sensing PASA CHIP is ready to be bonded and tested
- We will be ready in ~ two months to go for in-beam tests
- MIPs and uniform high counting rate flux all over the detector are mandatory

These results have been obtained in the frame of the

JRA4 - I3HP/FP6 and the new I3HP/FP7 Collaborations:

NIPNE – Bucharest

University of Münster

D.Bartos	M.Petris
I.Berceanu	M. Petrovici
V. Catanescu	V. Simion
A. Herghelegiu	A. Radu

C. Bergmann M. Klein-Bösing A. Wilk J.P. Wessels