Analog Chip for High Counting Rate Transition Radiation Detector

> Vasile Catanescu NIPNE - Bucharest

14th CBM Collaboration Meeting, Split, Oct. 6-9, 2009

Summary

- 1. Introduction: The first chip for high counting rate (HCR) Transition Radiation Detector (TRD) designed at NIPNE. Goal
- 2. Specification of the NIPNE first version analog chip for HCR TRD
- 3. Some new features, specific to a fast self triggered analog channel, implemented into the chip
- 4. Additional circuits implemented into the chip
- 5. Main results
- 6.Layout of the chip
- 7. Conclusions

1. Introduction

- the chip is developed in AMS CMOS 0.35µm technology
- acts as an analog, self triggered front end signal processor for HCR-TRD
- Goals:
- for testing the new HCR TRDs
- for evaluating different solutions for the HCR TRD front end electronics

2. Specifications of the NIPNE first version analog chip for HCR TRD

- Number of analog channel: 8
- Analog channel outputs:

a) fast semi-Gaussian output signal

b) peak-sense output signal

- In chip pulse generator for testing analog channels
- Channel self triggered capability
- Input/Output interface on request/grant basis

2.1 ASIC analog channels, main specifications

• A verage nulse rate:	over 300 kcps		
Difference pulse fute.		•Channel ENC (Cdet=25pF):	
•Detector capacitance:	25 pF	-for shaping time 40 ns	980 e
•Input range:	0.15fC165fC	-for shaping time 20 ns	1170 e
•Input type:	DC single ended	•Integral nonlinearity:	
•Channel gain:	6.1 mV/fC	-for shaping time 40 ns	< 0.21%
•Shaping time:	20 ns or 40 ns	-for shaping time 20 ns	< 0.9%
	(1 bit select)	•Overshoot (undershoot)	
•Output pulse FWHM:	62 ns or 110 ns	- for shaping time 40 ns	< 0.2%
•Output type:	single ended	-for shaping time 20 ns	< 0.8%
•Output voltage swing	01V	•Peak-sense out settling time 0.1	$\frac{0.0}{0} < 450 \text{ ns}$
•Output DC voltage	0.2V1V	•Peak sense out decay	$< 25 \mu V/\mu c$
level:	(cont. adj)	•Solf triggored appohility	< 25µ v/µs
•Output pulse variations:		-Sen triggered capability	
		-threshold variable	0165 fC
-with $\text{Temp}=0^3 \dots 10^3 \text{ C}$	<0.03%/°C	(cont. adj.):	(full range)
-with Vd=3.03.6V	< 0.18%/V	-hit occurence signal	logic level
•Output baseline shift:		•Power consumption: 11r	nW/channel
-with Temp=0°70° ($C < 8\mu V/ °C$		
-with Vd=3.03.6V	< 0.07%		
-with leakage current	$< 5\mu V/nA$		

3. Some new features, specific to a fast analog channel, implemented into the chip

3.1 Typical response of analog channel to slow or moderate counting rate

Typical Response of a slow (moderate) speed analog channel 1000-TC/pr-out - preamplifier out 950.0 900.0 €850.0-€ >800.0-750.0 700.0 650.0 575-JVT("/prpz-out" 550-525 pole-zero circuit out S⁵⁰⁰⁻ E475->450 425 400 375 1.6-VIC7sh1-out" - first shaper out 1.4 ε^{1.2} $>_{1.0}$ 2.0-VI(7fast-out) - second shaper out 1.75 ε^{1.5} >1.25 1.0 .75-.250 .500 .750 1.0 time (us)

3.2 Good response to double pulse and high rate

Analog channel output to double pulse
first pulse of maximum amplitude
second pulse of 20% of maximum amplitude
delay between pulses: 1µsec

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

3.3 Fast recovery to charge overload

Channel response with fast recovery circuits: Channel response without fast recovery circuits:

-short channel dead time even for large overload (ten times full range) -very good double pulse separation and response to high pulse rate -no base line perturbations Vasile Catanescu -channel is dead for long time -double pulse separation and response to high rate pulses are not possible -important base line perturbations

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

3.4 Base line restoration due to detector leakage current and/or to high counting rate

Baseline shift to the detector leakage current Analog channel with baseline restoration circuit

•*Analog channel with base line restoration:* - non significant base line shift

Ilk	DC(fast-out
-50nA	499.8mV
-25nA	499.8mV
0nA	499.9mV
25nA	500.0mV
50nA	500.1mV

Vasile Catanescu

•*Analog channel without base line restoration:* - large base line shift

Ilk	DC(fast-out)	
-50nA	461.3mV	
-25nA	480.3mV	
0nA	499.2mV	
25nA	518.0mV	
50nA	536.9mV	

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

3.5 Shaping time selection

• logic level selection

Transient Response to a simulated Garfield signal for two shaping time

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

3.6 Self trigger and pulse peak-sense circuits

• Self triggered (signal over the threshold)

• Variable threshold for selection of the useful amplitudes

Vasile Catanescu

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

4. Additional implemented circuits

4.1 Calibration pulse generator (improved version of the ALICE TRD)

• Useful in finding channel gain

• No additional software needed for gain finding

4.2 Fast input/output interface for data processing4.3 Reference and bias circuits

5. Main results

5.1 Typical response of one self triggered analog channel to delta current signal

Transient Response of one channel to delta current input signal (Qd=165fC, Shaping time=40ns, Qth=6fC)

• Self trigger – event out

- variable threshold (0...165fC)
- logic levels

• Request -logic levels

Readylogic levels

5.2 Transient response to a simulated Garfield current signal

Fast-out and peak-sense out for shaping time 40ns

Fast-out and peak-sense out for shaping time 20ns

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

5.3 Fast-out and peak-sense out variations with voltage supply

Vdda=3.40 V — Vdda=3.50 V

• Fast-out variations with Vdda=3V...3.6V - gain variation < 0.16% - DC baseline variation $< 50 \,\mu V$

Peak-sense out variations with

Vdda=3V....3.6V

- gain variation < 0.18%
- DC baseline variation $< 350 \,\mu V$

5.4 Fast-out and peak-sense out variations with temperature

40

30

temp ()

50

60

70

 Fast-out variations with temperature T=0° C...70° C
 gain variation <0.03%/ °C
 DC level baseline variation <8μV/ °C

• Peak-sense out variations with temperature T=0 C...70 C - gain variation <0.03%/ °C

- DC level baseline

variation

<6µV/ °C

0.0

10

20

6.05

5.5 Integral nonlinearity specifications

5.6 Noise specifications

• Integral nonlinearity:

-fast-out shaping time 20ns<0.47%</td>-fast-out shaping time 40ns<0.21%</td>-peak-sense out shaping time 20 ns<0.91%</td>-peak-sense out shaping time 40ns<0.19%</td>

• Noise values for input capacitance Ci=25 pF:

- 980 electrons for shaping time 40 ns
- 1170 electrons for shaping time 20 ns
- Noise slope for Ci=10pF...40pF
- about 22 electrons/pF for shaping time 40ns
- about 31 electrons/pF for shaping time 20ns

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

5.7 Corner specifications (Foundry mandatory "Corner analysis") Corner parameters: wp,ws,wPth, wNth, T=0°....70°C, Vd=3.0 ... 3.6V **5.7.1 Fast-out:**

5.7.2 Peak-sense out:

5.7.3 Noise variation in corners

5.7.4 Chip power consumption in corners

Chip Power consumption

(Foundry mandatory Corner analysis)

5.8 Monte Carlo analysis

5.8.1 Fast-out:

5.8.2 Peak-sense out:

25

20-

e¹⁵⁻

ŝ

hit

10

5.0

0.0-

50

40-

e ³⁰⁻

(ÎW) II 20-

10

0.0

40.0

5.0

14thCBM Collaboration Meeting, Split, Oct. 6-9, 2009

6.Layout of the first version of NIPNE analog chip for HCR TRD

7. Conclusions

Main desirable features were implemented to the chip:

- Good response to double pulse
- Good response to high pulse rate
- Fast recovery from overload
- Stable baseline to leakage current, temperature and voltage supplies variations
- More analog signal processing and peak-sense output facility
- Self triggered channel capability
- Input/Output interface
- Robust design
- First version of NIPNE chip for high counting rate TRD was submitted last November, already delivered, the bonding was done, preliminary tests performed
- Two FEE boards were done for tests and data acquisitions

Special thanks to Volker Lindenstruth and Ralf Achenbach

for their support in bonding the first CHIPs @