

Toward a high granularity, high counting rate differential read-out RPC

- > Differential strip architecture based on Pestov glass short review
- High granularity differential strip architecture
 - ⁶⁰Co source tests
 - First results from in-beam tests (GSI-Aug. 2009)

Conclusions & Outlook

Differential Strip – Readout Pestov Glass RPC Prototype

RPC

FEE NINO chips

LVDS NIM converter \Rightarrow

⁶⁰Co source test – time resolution differential architecture

Applied High Voltage = 6400 V

⁶⁰Co source test – time resolution differential architecture

Applied High Voltage = 6400 V

In-Beam Tests @ ELBE

Experimental set-up:

- electron beam, 28 MeV, scattered @ 45° by a 18 µm Al foil
- plastic scintillators S5(XP2972), S12(XP2020), S34(XP2020),
- $(2 \times 2 \text{ cm}^2)$ used for active collimation
- signal amplification: differential readout based on NINO chip developed within ALICE Collaboration
- digital converters: CAEN TDC V1290N
- DAQ MBS
- information recorded for 2 central strips

M. Petris et al. CBM Collaboration Meeting, 13-18 October, 2008, Dubna, Russia

High granularity HCRRPC – cross section

Symmetrical structure, differential readout

Active area 46 x 180 mm²

Electrodes: Float glass: 0.5 mm

 2×5 gas gaps; 140 μ m thickness each gap

Readout electrodes: 1 double sided anode and 2 single sided cathodes

made from pcb with copper strips: 72 strips each side:

2.54 mm strip pitch = 1.1 mm strip width + 1.44 mm gap width

High granularity HCRRPC

High granularity HCRRPC

Construction Details

⁶⁰Co source test set-up

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

⁶⁰Co signals recorded from one strip without any amplification

⁶⁰Co source test – time resolution RPC transverse strips

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

⁶⁰Co source test – time resolution RPC transverse strips

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

⁶⁰Co source – Plastic Scintillator Time Resolution

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

In-Beam Tests (a) SIS – GSI

- signal amplification: differential readout based on NINO chip developed within ALICE Collaboration
- digital converters: CAEN TDC V1290A
- DAQ MBS
- information recorded for 15 strips readout at both ends,

Events Distribution on Strips

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

Time resolution

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

Time resolution as a function of strip no.

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

Efficiency

Mariana Petris, CBM Collaboration Meeting, October 6 -9, 2009, Split, Croatia

Conclusions and Outlook

• Differential strip readout Pestov Glass RPC prototype

- The in-beam test showed the good performance of the counter with a differential readout based on NINO chip in terms of time resolution ~85 ps (! Including LVDS NIM converter)
 No deterioration of time resolution as a function of counting rate was observed up to ~ 16,000 part/cm²· sec in condition of an uniform illumination of the whole active area of the counter
- We <u>designed</u>, <u>built</u> and <u>tested</u> with ⁶⁰Co source a new configuration of a <u>high granularity, strip read-out, differential high counting rate RPC</u> using thinner glass electrodes, for small polar angles
- 60 Co source and in -beam test showed:
 - excellent time resolution
 - high granularity (multihit performance to be checked in real conditions)
 - preliminary 85% efficiency, not yet at the plateau value (the influence of NINO gain, threshold and electric field distribution to be studied!)
 - counting rate performance under investigation
 - *identical architecture using low resistivity glass electrodes MUST*!
 - differential NINO FEE is completely adequate for this type of architecture.
- In beam tests using:
 - ⁻ Minimum ionizing particles
 - Uniform illumination of the whole counter at high counting rate

In the near future, are mandatory

- Sufficient statistics for a multidimensional studies of the prototype
- Aging tests

Participants

NIPNE – Bucharest D. Bartos G. Caragheorgheopol M. Petris M. Petrovici V. Simion CERN - Geneva

Uni Heidelberg I. Deppner N. Herrmann M. Kiss P. Loizeau Y. Zhang

C. J. Williams

Special Thanks to: M. Ciobanu, D. Gonzalez-Diaz V. Aprodu, L. Prodan and A. Radu