

Proiect NUCLEU PN 19 06 01 03

Raport de etapa 2: Testarea performantei prototipurilor de detectori cu electrozi rezistivi pentru masuratori de timp de zbor MSMGRPC, dezvoltati pentru CBM-TOF, folosind un sistem de achizitie cu electronica auto-trigerata similar cu cel ce va fi utilizat in experimentul CBM (partea II)

Raport de etapa 3: Proiectarea si realizarea a doua prototipuri de MSMGRPC, simulari APLAC ale impedantei liniei de transmisie, proiectarea zonei interne a subdetectorului de timp de zbor al CBM bazat pe detaliile constructive ale acestora (partea I)

Mapping the phase diagram with CBM

CBM aims to investigate strongly interacting matter in the region of high net baryon densities.

Investigation of:

- hadronic partonic phase transition and its type
- equation of state at high baryonic densities
- possible critical point predicted by QCD

SIS100 Beam	Plab, max	$\sqrt{(s_{NN,max})}$
Heavy ions (Au)	11A GeV	4.7 GeV
Light ions (Z/A=0.5)	14A GeV	5.3 GeV
protons	29 GeV	7.5 GeV

Experiments exploring dense QCD matter

CBM experiment @ SIS100/FAIR

CBM: is a high rate experiment!

- Fast, radiation hard detectors and front-end electronics.
- Novel readout system:
 - Free-streaming readout,
 - detector hits with time stamps,
 - 4-D (space+time) event reconstruction.
- High speed data acquisition & performance computing farm for on-line event selection.

CBM will perform comprehensively high precision measurements of rarely produced observables. Multi-differential studies of rare probes (<1 particle per million events) require unprecedent statistics. Opens up new possibilities!

- Hadrons in dense baryonic matter and possible modification of their properties;
- Charm production at threshold beam energies and its properties in dense baryonic matter.

CBM Collaboration, Eur. Phys. J. A (2017) 53: 60

CBM – TOF requirements

CBM-ToF Requirements:

- > Full system time resolution $\sigma_{_{\rm T}} \sim 80 \text{ ps}$
- Efficiency > 95%
- **Rate capability** \leq 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- ➢ Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition CBM Collaboration, "CBM – TOF Technical Desing Report", October 2014

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

Detectors with different rate capabilities are needed as a function of polar angle

Our R&D activity addresses the CBM-TOF inner wall:

- highest counting rate
- highest granularity
- ~14 m^2 active area

PID with CBM setup

- Hadron id: TOF (+TRD)
- Lepton id: RICH+TRD or MUCH
- γ, π0: EMC (or RICH)

Testarea performantei prototipurilor de detectori cu electrozi rezistivi pentru masuratori de timp de zbor MGMSRPC, dezvoltati pentru CBM-TOF, folosind un sistem de achizitie cu electronica auto-trigerata similar cu cel ce va fi utilizat in experimentul CBM (partea II)

Estimarea performantelor detectorului in termeni de dimensiune a clusterului de stripuri cu semnal in conditii de multi-hit

SS-RPC2015 prototype 100 Ohm transmission line impedance

Glass plate

✓ Single stack structure: 8 gaps

✓ Active area 96 x 300 mm2

✓ Gas gap thickness: 140 µm thickness

✓ Readout electrode = 28 strips

✓ Differential readout = 100 Ohm impedance

✓ Resistive electrodes: low resistivity glass

Readout & HV electrode : 10.1 mm pitch= 8.6 mm width + 1.5 mm gap

RPC2015DS prototype strip impedance tuned through the readout strip width

✓ Symmetric two stack structure: 2 x 5 gaps

- ✓ Active area 96 x 300 mm2
- ✓ Gas gap thickness: 140 µm thickness
- ✓ Readout electrode = 40 strips
- ✓ Differential readout
- ✓ Resistive electrodes: low resistivity glass

Goal – perfect matching of the impedance of the signal transmission line to the imput impedance of the FEE, in order to reduce the amount of fake information resulted from reflections.

> Simulations predicted ~99 Ω impedance for 1.3 mm readout and 5.6 mm high voltage strip widths

Readout electrode: 7.2 mm pitch= 1.3 mm width + 5.9 mm gap – define impedance High Voltage electrode: 7.2 mm pitch= 5.6 mm width + 1.6 mm gap – define granularity

Assembled MSMGRPC2015 prototypes

<u>Common in counter architecture:</u> Electrodes: 0.7 mm low resistivity Chinese glass Gap size: 140 μm thickness Differential readout, 100 Ω impedance Active area: 96 x 300 mm²

Differences in counter architecture:

DS: Symmetric two stack structure: 2 x 5 gas gaps SS: Single stack structure: 1 x 8 gas gaps

Fall 2016 CERN - SPS in-beam tests

Pb beam of 13/30/150 AGeV on a Pb target

RPC2015DS (32/40 operated strips) (32/40 operated strips) (32/40 operated strips) (32/40 operated strips) (32/40 operated strips)

CBM-TOF readout ~ 500 Channels with a new readout-chain based on: PADI / GET4 / AFCK / FLIB => DAQ was running stable.

Results of Fall 2016 in-beam test

Detector performance in terms of:

- efficiency (Progress Report 30.07.2019)
- time resolution (Progress Report 30.07.2019)
- cluster size

in a close to real free-streaming signal processing

Time difference spectrum

Progress Report 30.07.2019

Single counter time resolution = 44 ps

Time – Cluster Size Correlations

time - CluSize correlation

time - CluSize correlation

	DUT	REF
HV	±8.8 kV (157 kV/cm)	±5.5 kV (157 kV/cm)
FEE Th	300 mV	300 mV
Cl Size	1.7	1.6

Time – Cluster Size Correlations

	DUT	REF
HV	±8.8 kV (157 kV/cm)	±5.5 kV (157 kV/cm)
FEE Th	200 mV	300 mV
Cl Size	2	1.7

Time – Cluster Size Correlations

	DUT	REF
HV	±8.9 kV (159 kV/cm)	±5.5 kV (157 kV/cm)
FEE Th	300 mV	300 mV
Cl Size	1.9	1.7

Multiplicity Correlation

Strip length calculation for the highest granularity of the CBM-TOF wall

- occupancy = 5%
- maximum hit density= $0.6 \times 10^{-2} \text{ cm}^{-2}$
- strip pitch = 0.72 cm
- average cluster size = 1.8 strips

Proiectarea si realizarea a doua prototipuri de MGMSRPC, simulari APLAC ale impedantei liniei de transmisie, proiectarea zonei interne a subdetectorului de timp de zbor al CBM bazat pe detaliile constructive ale acestora (partea I)

> Desene de poiectare a componentelor mecanice si electronice folosind platformele QCAD si OrCAD

New RPC2018 prototype design Motivation

RPC2015 prototypes:

- SS. 10.1 mm strip pitch 28 operated strips out of 28 100% active area
- DS. 7.2 mm strip pitch 32 operated strips out of 40 80% active area

 ✓ In order to fulfill the requirement to have modulo 32 readout strips compatible with 32 channels FEE baseboard

New RPC2018 prototype design

From RPC2015 to RPC2018 prototype

^{19DS60-FAZ1.5} Readout electrode: 9.02 mm pitch= 1.27 mm width + 7.75 mm gap High Voltage electrode: 9.02 mm pitch= 7.37 mm width + 1.65mm gap

Mariana Petris, DFH Seminar, 31.10.2019

Anode readout electrode

OrCAD

Cathode readout electrode

High voltage electrode

OrCAD

Mariana Petris, DFH Seminar, 31.10.2019

Honeycomb & mechanical support plates

Back pannel connector plate

Manufactured components

Manufactured components

Conclusions and Outlook

- The obtained results of 2016 SPS in-beam test using a free-streaming signal processing showed the high granularity MSMGRPC performance.
- They demonstrate the possibility to operate MSMGRPCs in a free-streaming readout mode with minimum fake signals produced by reflections, thus becoming a real candidate for high interaction rate experiments.
- The MSMGRPC prototype with the highest granularity of the CBM-TOF wall was designed. The technical drawings of the mechanical and electronic components used for its assembling were made using QCAD and OrCAD software platforms.

