

Proiect NUCLEU PN 19 06 01 03

Raport de etapa nr. 4

Proiectarea si realizarea a doua prototipuri de MSMGRPC, simulari APLAC ale impedantei liniei de transmisie, proiectarea zonei interne a subdetectorului de timp de zbor al CBM bazat pe detaliile constructive ale acestora (partea II)

Mapping the phase diagram with CBM

CBM aims to investigate strongly interacting matter in the region of high net baryon densities.

Investigation of:

- equation of state at high baryonic densities (neutron star core densities)
- hadronic partonic phase transition and its type
- possible critical point predicted by QCD

SIS100 Beam	Plab, max	$\sqrt{(s_{NN,max})}$
Heavy ions (Au)	11A GeV	4.7 GeV
Light ions (Z/A=0.5)	14A GeV	5.3 GeV
protons	29 GeV	7.5 GeV

Experiments exploring dense QCD matter

CBM experiment @ SIS100/FAIR

CBM: is a high rate experiment!

- Fast, radiation hard detectors and front-end electronics.
- Novel readout system:
 - Free-streaming readout,
 - detector hits with time stamps,
 - 4-D (space+time) event reconstruction.
- High speed data acquisition & performance computing farm for on-line event selection.

CBM will perform comprehensively high precision measurements of rarely produced observables. Multi-differential studies of rare probes (<1 particle per million events) require unprecedent statistics. Opens up new possibilities!

- Hadrons in dense baryonic matter and possible modification of their properties;
- Charm production at threshold beam energies and its properties in dense baryonic matter.

CBM Collaboration, Eur. Phys. J. A (2017) 53: 60

CBM – TOF requirements

CBM-TOF modular structure

CBM-ToF Requirements:

- > Full system time resolution $\sigma_{_{\rm T}} \sim 80 \text{ ps}$
- Efficiency > 95%
- **>** Rate capability \leq 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition

CBM Collaboration, "CBM – TOF Technical Desing Report", October 2014

URQMD simulated charged particle flux from Au + Au events for an interaction rate of 10 MHz

Detectors with different rate capabilities and granularities are needed as a function of polar angle

Our R&D activity addresses the CBM-TOF inner wall:

- highest counting rate
- highest granularity
- ~15 m² active area $(2.5^{\circ} 12^{\circ} \text{ polar angle})$

Strip length calculation for the highest granularity of the CBM-TOF wall

- occupancy = 5%
- maximum hit density= $0.6 \times 10^{-2} \text{ cm}^{-2}$
- strip pitch = 0.72 cm
- average cluster size = 1.8 strips

► 6 cm strip length for the counter with the highest granularity

Calcule pentru o impedanta de 100 Ohm a liniei de transmisie a semnalului pentru 140 µm spatiu intre electrozii rezistivi folosind software-ul APLAC

New RPC2018 prototype design Motivation

RPC2015 prototypes:

- SS. 10.1 mm strip pitch 28 operated strips out of 28 100% active area
- DS. 7.2 mm strip pitch 32 operated strips out of 40 80% active area

✓ In order to fulfill the requirement to have modulo 32 readout strips compatible with 32 channels FEE baseboard

From RPC2015 to RPC2018 prototype

Readout electrode: 9.02 mm pitch= 1.27 mm width + 7.75 mm gap High Voltage electrode: 9.02 mm pitch= 7.37 mm width + 1.65mm gap

Mariana Petris, DFH Seminar, 04.12.2019

Signal transmission line impedance in MSMGRPCs

Double stack, strip readout, multigap, timing RPC concept - MSMGRPC

- The overlapped readout strips and the materials in between define a signal transmission line (STL)
- STL impedance $\mathbf{Z}_{_{0}}$ depends on the readout strip

width and the properties of the material layers in between - APLAC software used for impedance estimations

1.27/7.4 mm readout/HV strip width

APLAC simulations for the characteristic impedance of the **MSMGRPC** transmision line impedance

If $R = Z_0 = Z_1$ the transmission line is matched; Z_o = characteristic impedance of a transmission line Z₁ = load resistor connected to the transmission line **R** = internal resistance of the pulse generator

D. Bartos et al. Romanian Journal of Physics 63, 901 (2018)

Mariana Petris, DFH Seminar, 04.12.2019

for different values of the readout strip width

Calculations of the length of the traces for the transmission of the anode and cathode signals to the connectors

Anode board traces (50 Ω)

Cathode board traces (100 Ω)

Mariana Petris, DFH Seminar, 04.12.2019

OrCAD design of the readout electrodes and their manufacture

Prototype assembling

Back pannel equipped with signal connectors, gas and HV connectors Desene de proiectare a zonei unghiurilor polare mici ale CBM-TOF bazat pe detaliile constructive ale acestor prototipuri, integrata constructiv in ansamblul subdetectorului CBM-TOF

CBM-TOF Inner Wall Design

CBM-TOF inner zone – modular design

- $\sim 15 \text{ m}^2$ active area (4.7 m x 3.2 m)
- 12 modules of 4 types (2M1, 4M2, 4M3, 2M4)
- 470 MSMGRPCs of 0.9 mm strip pitch,
- 3 types of MSMGRPCs \rightarrow differ through the strip length :
 - 60 mm (MRPC1a) 220 counters
 - 100 mm (MRPC1b) 164 counters
 - 200 mm (MRPC1c) 86 counters
- 30 080 readout channels

Mariana Petris, DFH Seminar, 04.12.2019

Prototypes for the CBM-TOF Inner Wall

60 mm strip length

100 mm strip length

100 mm strip length

Focused p beam, 2.5 GeV/c @ COSY Julich

Ni 1.9 GeV/u on Pb target GSI Darmstadt, exposure over whole active area

Mariana Petris, DFH Seminar, 04.12.2019

200 mm strip length

M.Petrovici et al. JINST 7 P11003, 2012 M.Petris et al. JINST 11 C09009, 2016 M. Petris et al., NIMA 920 (2019), 100

Modul M1 Design

51 MSMGRPCs

30 x MRPC1a (60 mm) 18 x MRPC1b (100 mm) 3 x MRPC1c (200 mm)

Back panel connectors:

- 408 inside
- 408 outside

weight: ~ 150kg

Modul M1 – details of the execution drawings

MSMGRPCs are staggered on four layers in order to provide the necessary overlap for a continuous active area.

Mariana Petris, DFH Seminar, 04.12.2019

Modul M1 − details of the execution drawings → mechanical supports

Modul M1 – details of the execution drawings for a mechanical support

M1 design details – gas deflector

M1 design details – gas deflector 3D view

M1 equipped with gas deflectors

M1 design details – Al backpanel

M1 design details – Al backpanel

Mariana Petris, DFH Seminar, 04.12.2019

Back pannel connector plate

OrCAD

- - -- -,

M1 design details – FEE mechanical supports

Mariana Petris, DFH Seminar, 04.12.2019

Space frame design

Conclusions and Outlook

- The MSMGRPC prototype with the highest granularity of the CBM-TOF wall was designed with 100 Ohm characteristic impedance of the transmission line matched to the input of the front-end electronics, using OrCAD and APLAC software.
- Two identical prototypes with the highest granularity of the CBM-TOF wall were assembled based on this design.
- A modular design of the inner zone of the CBM-TOF wall, cover the active area with 12 modules of 4 types. The modules are populated with up to three types of MSMGRPCs which differ only by their strip length, having the same inner geometry.
- Detailed technical drawings for the design of M1 module have been performed.
- Module M1 is going to be assembled in the near future.

Conclusions and Outlook

The presented activity was reported in:

✓ M. Petris et al.

"Status of the activities for the CBM-TOF inner wall"

34th CBM Collaboration Meeting, 29th September - 3rd October 2019, Kolkata, India

✓ M. Petris et al.

"Towards the construction of the CBM-TOF inner zone" XXIII International School on Nuclear Physics, Neutron and Applications, September 22 – 28, 2019 Varna, Bulgaria

nank you for your attention

mr-ft