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Outline

* complex EXCITED VAMPIR beyond-mean-field model

neutron-rich A~100 nuclei with N~58 in collaboration with

- triple shape coexistence and shape evolution in *5Sr and *8Zr. (2012)

- shape coexistence and Gamow-Teller - decay of 921%4Tc¢  (B. Rubio — Valencia Univ.) (2013)

- oblate-prolate coexistence and shape evolution in */Kr (G. de France — Ganil) (2017)
- particular behavior of N=56 "Ru (C. Petrache — IN2P3— Orsay) (2017)
- shape coexistence and new isomers in Y (S. Leoni — Milano Uniy.) (2017)

*triple shape coexistence and B~ decay of Y (N=57) to %Zr (N=56)

- first-forbidden [~ decay of the 0" ground state of *SY
- Gamow-Teller = decay of the 8" isomer in %Y

- exotic decays of the 0" daughter states in *SZr



Characteristic features of neutron-rich A~100 nuclei

* shape transition, shape coexistence, shape mixing

* drastic changes in structure with particle number, spin, excitation energy

« ”sudden” onset of deformation for N>58 neutron number

Challenges for theory

e realistic effective Hamiltonians in adequate model spaces, beyond-mean-field methods
aiming to

* unitary description of evolution in structure at low and high spins

e comprehensive understanding of structure phenomena and f-decay properties



complex VAMPIR model family

- the model space is defined by a finite dimensional set of spherical single particle states

e the effective many-body Hamiltonian is represented as a sum of one- and two-body terms

e the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua

e the HFB transformations are essentially complex and allow for proton-neutron, parity and

angular momentum mixing being restricted by time-reversal and axial symmetry

(T=1 and T=0 neutron-proton pairing correlations already included at the mean-field level )

* the broken symmetries (s=N, Z, I, p) are restored by projection before variation

* The models allow to use rather large model spaces and realistic effective interactions



Beyond-mean-field variational procedure: complex EXCITED VAMPIR model
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A~100 mass region

YWCaq - core

model space for both protons and neutrons :

Ipys 1ps; Ofs Ofy 25y, 1d3, 1ds, 085, 08, Ohyyy,
(single-particle energies adjusted within complex MONSTER (VAMPIR))

renormalized G-matrix (OBEP, Bonn A/CD)

e pairing properties enhanced by short range Gaussians for:
T =1 pp, np, nn channels

T=0,S=0and S =1 channels

e onset of deformation influenced by monopole shifts:

<0gy, 0f; T=0 |G| 0gy, 0£;T=0>

e Coulomb interaction between valence protons added



Beta-decay formalism

Allowed and first-forbidden matrix elements k Al An
Allowed
M(pv,ﬂ. = 0) CVf 1 0 0 +1
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Reduced single-particle matrix elements in harmonic oscillator basis
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Partial half-life of a beta transition
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Triple shape coexistence in

N=57 %Y and N=56 *5Zr

A. Petrovici and A.S. Mare, Phys. Rev. C 101, 024307 (2020)
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%Y : - spherical configuration in 0
- prolate mixing in 8 jsomer

(QFXP = -98(11) efin® QFYVAM,, = 973 efin’)

EEXP (8 ) = 4.390 MeV

EEXVAM (8% ) = 4.549 MeV

%Zr : - triple shape coexistence in lowest four 0" states

- prolate-oblate coexistence in 8* daughter states



Triple shape coexistence and EO transitions in *$Zr

The amount of mixing for the lowest 0F states of Zr.

p*(E0) values for the lowest four 0" states in %Zr .

1[h) spherical prolate oblate
0f 97% 1% 2%
04 19% 52% 29%
04 30% 50% 20%
0F 45% 3% 52%

EXVAM Exp.
I 0y 03 05 03
0f 0.021 0.005  0.008  0.0075(14)
05 0.053 0.010
07 0.016

Exp:  pP5:/0%31 =9.4(26) ; Pr2/PPy <3.0



114 €mec = 1.15 €mec = 1.19 Exp.

0f 5.60 5.53 5.59 (1)
0F 6.40 6.32 6.97 (4)
0f 6.52 6.45 7.41 (6)
0f 6.48 6.42 7.92 9)

TEXVAM | (OF (ground state )) = 5.21 S ( €mec = 1.15 )

177, , (0 (ground state)) = 5.34 (5) s



Independent chains of variational calculations for the parent and daughter states

%Yy . mixing of prolate deformed configurations for 8+,-some,,

%7y : prolate-oblate coexistence and variable mixing for daughter 8, 7%, 9% states

Gamow-Teller transition probabilities
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Qy=7.096 MeV
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Summary and outlook

complex EXCITED VAMPIR model self-consistently describes

 experimental trends in the N=58 Kr, Sr, and Zr isotopes:

o 98y and 3 Zr

- triple shape coexistence: spherical, prolate, and oblate configurations mixed in the lowest 4 0* states

- mulltifaceted structure with increasing spin and energy corroborated with electromagnetic properties

° 94Kr

- evolution of oblate-prolate mixing with increasing spin and excitation energy

* particular behavior of the N=56 "’ Ru isotope
s triple shape coexistence effects on structure and f~ decay of the N=57 %Y to N=56 *°Zr:

° 96Y

- triple shape coexistence: - spherical 0° ground state — first-forbidden B~ decay
- oblate low-lying states; prolate 6 isomer

- mixing of prolate configurations in 8* — GT B~ decay

isomer

o %7

- triple shape coexistence: - spherical, prolate, and oblate configurations mixed in the lowest 4 0* states
(significant EOQ strengths)
- prolate-oblate mixing in the structure of 8%, 7*, 9" — GT daughter states



