Triple shape coexistence and β decay of ⁹⁶Y to ⁹⁶Zr

A. PETROVICI

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

Outline

- complex EXCITED VAMPIR beyond-mean-field model
- neutron-rich A~100 nuclei with N~58 in collaboration with

- triple shape coexistence and shape evolution in ⁹⁶ Sr and ⁹⁸ Zr.		
- shape coexistence and Gamow-Teller β ⁻ decay of ^{102,104} Tc	(B. Rubio – Valencia Univ.)	(2013)
- oblate-prolate coexistence and shape evolution in ⁹⁴ Kr	(G. de France – Ganil)	(2017)
- particular behavior of N=56 ¹⁰⁰ Ru	(C. Petrache – IN2P3– Orsay)	(2017)
- shape coexistence and new isomers in ⁹⁶ Y	(S. Leoni – Milano Univ.)	(2017)

*triple shape coexistence and β^- decay of ${}^{96}Y$ (N=57) to ${}^{96}Zr$ (N=56)

- first-forbidden β^- decay of the 0⁻ ground state of ${}^{96}\mathrm{Y}$
- Gamow-Teller β^- decay of the 8^+ isomer in 96 Y
- exotic decays of the 0^+ daughter states in 96 Zr

Characteristic features of neutron-rich A~100 nuclei

- shape transition, shape coexistence, shape mixing
- drastic changes in structure with particle number, spin, excitation energy
- "sudden" onset of deformation for N>58 neutron number

Challenges for theory

- realistic effective Hamiltonians in adequate model spaces, beyond-mean-field methods aiming to
- unitary description of evolution in structure at low and high spins
- comprehensive understanding of structure phenomena and β-decay properties

complex VAMPIR model family

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry
- (T=1 and T=0 neutron-proton pairing correlations already included at the mean-field level)
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation
- * The models allow to use rather large model spaces and realistic effective interactions

Beyond-mean-field variational procedure: complex EXCITED VAMPIR model Vampir

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$
$$|\psi(F_{1}^{s}); sM \rangle = \frac{\Theta_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

 Θ^{s}_{00} - symmetry projector | F^{s}_{l} > - HFB vacuum

Excited Vampir

 $|\psi(F_i^s); sM\rangle = \sum_{i=1}^i |\phi(F_i^s)\rangle \alpha_i^i$ for i = 1, ..., n-1 $|\phi(F_i^s); sM\rangle = \Theta_{M0}^s |F_i^s\rangle$ $|\psi(F_n^s); sM\rangle = \sum_{i=1}^{n-1} |\phi(F_i^s)\rangle \alpha_i^n + |\phi(F_n^s)\rangle \alpha_n^n$ $(H - E^{(n)}N)f^n = 0$ $(f^{(n)})^+ N f^{(n)} = 1$ $|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$

A~100 mass region

⁴⁰*Ca* - *core*

model space for both protons and neutrons :

 $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 2s_{1/2} \ 1d_{3/2} \ 1d_{5/2} \ 0g_{7/2} \ 0g_{9/2} \ 0h_{11/2}$ (single-particle energies adjusted within complex MONSTER (VAMPIR))

renormalized G-matrix (OBEP, Bonn A/CD)

• *pairing properties enhanced by short range Gaussians for:* T = 1 pp, np, nn channels T = 0, S = 0 and S = 1 channels

• onset of deformation influenced by monopole shifts: <0g_{9/2} 0f; T=0 |G| 0g_{9/2} 0f;T=0>

• Coulomb interaction between valence protons added

Beta-decay formalism

Allowed and first-forbidden matrix elements		k	Δι	Δπ
Allowed				
$M(ho_V, \lambda = 0)$	$C_{\rm V}\int 1$	0	0	+1
$M(j_A, \kappa = 0, \lambda = 1)$	$C_{\rm A}\int \vec{\sigma}$	1	0,±1 (no 0 → 0)	+1
First-forbidden	_			
$M(ho_A, \lambda = 0)$	$C_{\rm A}\int\gamma_5$	0	0	-1
$M(j_A, \kappa = 1, \lambda = 0)$	$C_{\rm A}\int (\vec{\sigma}\cdot\vec{r}/i)$	V	Ŭ	
$M(ho_V, \lambda = 1)$	$C_{\rm V}\int \vec{r}i$			
$M(j_V,\kappa=0,\lambda=1)$	$C_{\rm V}\int \vec{\alpha}$	1	0,±1 (no 0 → 0)	-1
$M(j_A, \kappa = 1, \lambda = 1)$	$C_{\rm A} \int (\vec{\sigma} \times \vec{r})$			
$M(j_A,\kappa=1,\lambda=2)$	C _A ∫ iB _{ij}	2	0,±1, ±2 (no 0→0,1→0,0→1)	-1

	Reduced single-particle matrix elements in harmonic oscillator basis
$\int \vec{\sigma} \cdot \vec{r}$	$(-1)^{l_n-\frac{1}{2}+J}\delta_{j_nj_p} \begin{cases} 1/2 & 1/2 & 1\\ l_n & l_p & j_n \end{cases} \sqrt{\frac{6(2l_n+1)(2j_p+1)}{4\pi}} \langle l_n 0 1 0 l_p 0 \rangle \left(b \sqrt{n_n+l_n+3/2} \delta_{n_n,n_p} \delta_{l_p,l_n+1} - b \sqrt{n_n} \delta_{n_p,n_n-1} \delta_{l_p,l_n+1} \right)$
"∫ σ · ⊽ "	$\begin{cases} (-1)^{l_{n}+\frac{1}{2}+j_{n}}\delta_{j_{n}j_{p}} \ \delta_{l_{p} \ l_{n}-1} \begin{Bmatrix} 1/2 \ 1 \\ l_{n} \ l_{p} \ j_{n} \end{Bmatrix} \sqrt{6(2j_{p}+1)} \left(-\sqrt{l_{p}+1}\right) \frac{1}{b} \left(\sqrt{n_{p}+l_{p}+3/2} \ \delta_{n_{n},n_{p}} - \sqrt{n_{p}} \delta_{n_{p},n_{n}+1}\right) \\ (-1)^{l_{n}+\frac{1}{2}+j_{n}} \delta_{j_{n}j_{p}} \delta_{l_{p} \ l_{n}+1} \begin{Bmatrix} 1/2 \ 1/2 \ 1 \\ l_{n} \ l_{p} \ j_{n} \end{Bmatrix} \sqrt{6(2j_{p}+1)} \sqrt{l_{p}} \ \frac{1}{b} \left(\sqrt{n_{p}+l_{p}+1/2} \ \delta_{n_{n},n_{p}} + \sqrt{n_{p}+1} \delta_{n_{p},n_{n}-1}\right) \end{cases}$

Partial half-life of a beta transition

$$\frac{1}{t_{1/2}} = \frac{f}{K}$$

$$f = \int_{1}^{W_0} C(W)W(W^2 - 1)^{1/2}(W_0 - W)^2 F(Z, W)dW,$$

Gamow-Teller
$$C(W) = B(GT)$$

$$B_{if}(GT) = \frac{g_A^2}{2J_i + 1} |M_{GT}|^2$$
$$M_{GT} = \sum_{ab} m_{GT}(ab) \langle \xi_f J_f || [c_a^{\dagger} \tilde{c}_b]_1 || \xi_i J_i \rangle$$

first forbidden
$$0^- \rightarrow 0^+$$
 $C(W) = k + kb/W$

$$O(0^{-}) = \sum_{ab} o^{(0)}(0^{-})(ab) \langle \xi_f J_f || [c_a^{\dagger} \tilde{c}_b]_0 || \xi_i J_i \rangle$$

$$k = \zeta_0^2 + \frac{1}{9}w^2 \qquad \qquad kb = \frac{2}{3}\mu_1\gamma_1[-\zeta_0 w]$$

$$I(1,1,1,1,r) = \frac{3}{2} \begin{cases} 1 - \frac{1}{5} (\frac{r}{R})^2 & 0 \le r \le R\\ \frac{R}{r} - \frac{1}{5} (\frac{R}{r})^3 & r \ge R. \end{cases}$$

Triple shape coexistence in N=57 ⁹⁶Y and N=56 ⁹⁶Zr

A. Petrovici and A.S. Mare, Phys. Rev. C 101, 024307 (2020)

⁹⁶Y: - spherical configuration in 0_{gs}

- prolate mixing in 8⁺_{isomer}

$$(Q^{EXP}_{sp} = -98(11) efm^2 Q^{EXVAM}_{sp} = -97.3 efm^2)$$

⁹⁶Zr: - triple shape coexistence in lowest four 0⁺ states
- prolate-oblate coexistence in 8⁺ daughter states

Triple shape coexistence and E0 transitions in ⁹⁶*Zr*

$I[\hbar]$	spherical	prolate	oblate
0_{1}^{+}	97%	1%	2%
0_{2}^{+}	19%	52%	29%
0_{3}^{+}	30%	50%	20%
0_{4}^{+}	45%	3%	52%

The amount of mixing for the lowest 0^+ states of 96 Zr.

 $\rho^2(E0)$ values for the lowest four 0^+ states in ${}^{96}\mathrm{Zr}$.

$I[\hbar]$	$\underset{0_{2}^{+}}{\text{EXVAM}}$	0_{3}^{+}	0^+_4	Exp. 0_2^+
0_{1}^{+}	0.021	0.005	0.008	0.0075(14)
0_{2}^{+}		0.053	0.010	
0_{3}^{+}			0.016	

Exp: $\rho_{32}^2 / \rho_{31}^2 = 9.4(26)$; $\rho_{42}^2 / \rho_{41}^2 < 3.0$

I[ħ]	$\epsilon_{\rm mec} = 1.15$	$\epsilon_{\rm mec} = 1.19$	Exp.
$\overline{0_{gs}^+}$	5.60	5.53	5.59 (1)
0_{2}^{+}	6.40	6.32	6.97 (4)
0_{3}^{+}	6.52	6.45	7.41 (6)
0_{4}^{+}	6.48	6.42	7.92 (9)

 $T^{EXVAM}_{1/2} \ (0^{-} \ (ground \ state \)) = 5.21 \ s \ (\ \epsilon_{mec} = 1.15 \)$

 $T^{exp}_{1/2} (0^{-}(ground \ state)) = 5.34 (5) \ s$

Independent chains of variational calculations for the parent and daughter states

- ⁹⁶Y: mixing of prolate deformed configurations for 8^+_{isomer}
- ^{96}Zr : prolate-oblate coexistence and variable mixing for daughter 8^+ , 7^+ , 9^+ states

Gamow-Teller transition probabilities

$$B_{if}(GT) = \frac{1}{2J_i + 1} \frac{g_A^2}{4\pi} |M_{GT}|^2$$
$$M_{GT} \equiv (\xi_f J_f || \hat{\sigma} || \xi_i J_i)$$
$$= \sum_{ab} M_{GT}(ab) (\xi_f J_f || [c_a^{\dagger} \tilde{c}_b]_1 || \xi_i J_i)$$

 $Q_{\beta} = 7.096 MeV$

Summary and outlook

complex EXCITED VAMPIR model self-consistently describes

- experimental trends in the N=58 Kr, Sr, and Zr isotopes:
 - ⁹⁶Sr and ⁹⁸Zr
 - triple shape coexistence: spherical, prolate, and oblate configurations mixed in the lowest 4 0⁺ states
 - multifaceted structure with increasing spin and energy corroborated with electromagnetic properties
 - ⁹⁴Kr
 - evolution of oblate-prolate mixing with increasing spin and excitation energy
- particular behavior of the N=56¹⁰⁰Ru isotope
- triple shape coexistence effects on structure and β^- decay of the N=57 ^{96}Y to N=56 ^{96}Zr :
 - ⁹⁶Y
 - *triple shape coexistence*: **spherical** 0^- ground state **first-forbidden** β^- **decay**
 - oblate low-lying states; prolate 6⁻ isomer
 - mixing of prolate configurations in 8^+ isomer GT β^- decay

- ⁹⁶Zr
 - triple shape coexistence: spherical, prolate, and oblate configurations mixed in the lowest 4 0⁺ states (significant E0 strengths)
 - prolate-oblate mixing in the structure of 8⁺, 7⁺, 9⁺ GT daughter states