

Perspectives...

 This workshop: exactly 30 days before the official start of LHC (2.6Mio seconds)

10 September 2008

 Is the ALICE Offline ready to register, process and provide the ALICE physicists with a platform to efficiently analyse the first data?

ALICE Collaboration ~ 1/2 ATLAS, CMS, ~ 2x LHCb ~1000 people, 30 countries, ~ 80 Institutes

> Total weight 10,000t 16.00m Overall diameter Overall length 25m Magnetic Field 0.4Tesla

8 kHz (160 GB/sec) level 0 - special hardware

30 Hz

level 2 - PCs

(1.25 GB/sec)

data recording & LB&fca @ Sibiu 200@ffline analysis

Computing model – pp

Computing model – AA

Tape T0

Мария

RAW

Calibration

Generation of calibration parameters

Disk buffer T0 First pass Reco

Alien FC

LHC shutdown

T2s

MC data

T1s

20/08/08

LB&fca @ Sibiu 2008

Software management

- Regular release schedule
 - Major release every two months, several minor releases (tag) / month
- Nightly produced <u>UML diagrams</u>, <u>code listing</u>, <u>coding rule</u> <u>violations</u>, <u>build and tests</u>, <u>benchmarks</u>, single <u>repository</u> with all the code
 - No version management software (we have very few packages!)
 - Very portable code (Linux 32/64, Mac OS X, Sun)
- Advanced code tools under development (with IRST/Trento)
 - Smell detection
 - Aspect oriented programming tools
 - Automated genetic testing
- Documentation for AliRoot and AliEn produced
- Intensive training ongoing

Software management

- Strict weekly release schedule for AliRoot
 - Coordinated with detector groups
 - Essential for integration and validation of detector algorithms in DAQ/HLT systems (shared code)
 - Some effort to explain to the community that "a release is a release"
- Simultaneous deployment on the Grid for RAW production and ESD analysis
- Titanic effort to remain below 2GB is paying off

The Simulation

Alignment

Alignment-aware ITS reconstruction

The momentum and impact parameter resolutions are defined by the "quality" of the provided alignment objects (ideal AliAlignObjs \rightarrow ideal resolutions).

Calibration in the offline world

OCDB AliEn catalog

- Validity range
- Version
- Unique ID

Storage (local or grid)

- Conditions data is uniquely identified by 3 parameters
 - Logical path: "TPC/ Calib/Pedestals", "TRD/ Align/Data"...
 - Run range validity:[0,100], [1,1] ...
 - Version (local and Grid)

The reconstruction

Incremental process

- Forward propagation towards to the vertex TPC⇒ITS
- Back propagation ITS⇒TPC⇒TRD⇒TOF
- Refit inwardTOF⇒TRD⇒TPC⇒ITS
- Continuous seeding
 - Track segment finding in all detectors

- Combinatorial tracking in ITS
 - Weighted two-tracks χ² calculated
 - Effective probability of cluster sharing
 - Probability not to cross given layer for secondary particles

20/08/08

Combined ITS+TPC+TRD tracking

Momentum resolution: ~1% at 1 GeV/c, ~4% at 100 GeV/c

Efficiency:

~85% at 0.2 GeV/c ~95% above 2.0 GeV/c

20/08/08

Visualisation

Quasi-online reco

- Recent development
- Very useful for high-level QA and debugging
- Integrated in the AliEVE event display
- Full Offline code sampling events directly from DAQ memory

ALICE Analysis Basic Concepts

- Analysis Models
 - Prompt data processing (calib, align, reco, analysis) @CERN with PROOF
 - Batch Analysis using GRID infrastructure
 - Local analysis
 - Interactive analysis PROOF+GRID
- User Interface
 - Access GRID via AliEn or ROOT UIs
- PROOF/ROOT
 - Enabling technology for CAF
 - GRID API class TAliEn
- Analysis Object Data contain only data needed for a particular analysis
- Analysis à la PAW
 - ROOT + at most a small library
- Work on the distributed infrastructure has been done by the ARDA project

Data reduction in ALICE

Requires AliRoot+Cond +AliEn (once)

Has to run on a disconnected laptop

Organised analysis

- Organised analysis is the most efficient way for many tasks to read and process the full data set
 - Optimise CPU/IO ratio for distributed resources
 - Common well tested framework
 - Common knowledge base and terminology
 - Document procedure
 - Makes results reproducible
- Will run "sanctified" algorithms and will assess global data quality

Analysis train

- AOD production will be organized in a 'train' of tasks
- To maximize efficiency of full dataset processing
- To optimize CPU/IO
- Using the analysis framework

20/08/08

AliAnalysis Framework

- Data-oriented model composed of independent tasks
 - Task execution triggered by data readiness
- Parallel execution and event loop done via TSelector functionality
 - Mandatory for usage with PROOF
- Analysis execution performed on event-by-event basis
- Same code for interactive / parallel / local / grid analysis
- Adopted by the PWG's

Planning

Resource overview

Parameter	Now	CTDR	Ratio
pp RAW	1.0MB	0.2MB	5*
Pb RAW	35MB	13.8MB	2.5
ESD pp	0.04MB	0.04MB	1.0
ESD Pb	6.3MB	3.0MB	2.1
AOD pp	5kB	16kB	0.3
AOD Pb	1.3MB	0.34MB	3.8
Reco pp	6.8s	6.5s	1.0
Reco Pb	800s	810s	1.0

No Root compression yet

* was 22!!

Pledged by external sites versus required (new LHC schedule) all											
		2008		2009		2010		2011		2012	
		T1	T2								
CPU	Requirement (MSI2K)	10.1	12.5	19.9	14.3	23.5	25.0	30.5	32.5	39.7	42.2
	Missing %	-33%	-28%	-37%	-7%	-32%	-27%	-48%	-44%	-60%	-57%
Disk	Requirement (PB)	3.9	1.7	6.8	4.0	12.0	4.3	16.8	5.6	22.7	7.3
	Missing %	-31%	6%	-30%	-10%	-35%	9%	-53%	-17%	-65%	-36%
MS	Requirement (PB)	5.7		12.4		19.8	•	27.3		34.1	-
	Missing %	-40%	•	-36%		-34%	•	-52%	-	-62%	-

The access to the data

20/08/08

Xrootd architecture

Client sees all servers as xrootd data servers

20/08/08

Storage tech: new trends ALICE global redirector

all.role manager all.manager meta alirdr.cern.ch:1312

20/08/08

all.role manager all.manager meta alirdr.cern.ch:1312

all.role manager all.manager meta alirdr.cern.ch:1312

LB&fca @ Sibiu 2008

Analysis on the Grid - challenges

- Simplify the Grid job submission language
 - Introduction of storage types removal of explicit storage elements
 - Already done for job management
- Provide stronger job optimization machinery
 - In particular fairshare between users
 - Remove entirely the need to specify any grid components
 - Automatic methods for data retrieval from MSS 'in advance' of the job landing on a CPU
 - This is the hardest part currently effective analysis is only possible on pre-staged datasets

Chaotic analysis

- The most difficult activity to "tame"
 - We don't know how it looks like but will tell it when we see it
 - Can only be "simulated" till the users are really there (and then is too late!)
 - Response time and flexibility of the system are essential
 - NOT the strong point of today's Grid!

The ALICE Grid

A short history of the ALICE Grid

- Working prototype in 2002
 - The ALICE Grid is born
- The Vision From the Very Beginning
 - Single interface to distributed computing for all ALICE physicists
 - File catalogue, job submission and control, application software management, end user analysis
 - And this is....
 - AliEn Alice Environment

Toddler years 2003-2004

- First MC productions...
- Full vertical Grid interfaced down to local batch system level and any type of local storage the site provides (capability retained and refined up to today)
- Few hundred CPUs at 13 sites
- Very ambitious goals validation of the entire ALICE Computing model

Toddler years (2)

CPU work: 285 MSI-2K hours (one 2.8 GHz PC working for 35 years)

At that time ALICE was...

Terrible twos (and a bit beyond)... 2005-2006

- Increased sophistication of the central AliEn services
- Full integration with the LCG services
 - AliEn is moving toward 'Top level Grid management'
- Beginning of the story with storage (still ongoing)
- Increase the number of participating sites and CPUs used
- And more data challenges...this time with a solid backup of the Computing TDR
 - Published in June 2005

AliEn services in 2005

PDC results@end of 2005

- Data Challenge IV with LCG SC3: distributed MC production works routinely
- Monitoring: 25 sites operational, up to 1800 concurrent jobs, all using LCG resources, LCG services and ALICE services, thanks to our experience with AliEn

Running jobs (8 November)

Farm	Min	Avg	Max
Sum	1160	1651	1771
CCIN2P3	134	210	231
CERN-L	268	286	304
CNAF	255	362	394
FZK	0	531	600
Houston	0	3	14
Münster	2	58	81
Prague	43	61	71
Sejong	2	2	2
Torino	33	41	43

First records – Dec. 2005

At that time ALICE was...

Beginning of the endless DC

- April 2006 decision to run in a quasipermanent mode
- Integration of new sites
 - Workload and storage
- Improving the robustness of central AliEn services
- Operational experience
- Test of AliRoot, new MC productions

PPS Schedule for gLite 3.0

April 2006 - xrootd is adopted

- xrootd with MSS backend is operational at CERN
- Similar setup is being brought online at Lyon
- For other sites experts are preparing the software and instructions for site experts how to install xrootd on the local storage servers
- Discussion of interoperation of various storage solutions (CASTOR2, DPM, dCache and xrootd ongoing
- SRM standard is still being discussed
- ALICE will use xrootd based storage and is actively pursuing its inclusion in the standard LCG package

History of PDC'06

- Continuous running since Aplil 2006
 - Test jobs, allowing to debug all site services and test the stability
 - From July production and reconstruction of p+p MC events

Resources statistics PDC'06

Resources contribution (normalized Si2K units):
 50% from T1s, 50% from T2s

6 T1s, 30 T2s

At that time ALICE was...

20/08/08

Kindergarten 2007-today

- Toward fully redundant central services
- Integration of gLite transfer and storage solutions
- Automatic site and central services management tools 'auto-pilot mode'
- Automatic production tools
- Integration of more sites, deployment of storage
- MC and RAW data production

Number of jobs evolution

Sites contribution

20/08/08

The ALICE Grid in numbers

- 73 participating sites
 - 1 T0 (CERN/Switzerland)
 - 6 T1s (France, Germany, Italy, The Netherlands, Nordic DataGrid Facility, UK)
 - 66 T2s spread over 4 continents
- As of today the ALICE share is some 7000 (out of ~30000 total Grid) CPUs and 1.5 PB of distributed storage
- In ½ year ~15K CPUs, x2 storage

And Romania?

- Since 2001 NIHAM is participating to the ALICE Grid
 - One of the most stable and efficient ALICE T2s
- In 2007 NIHAM has deployed the first SE outside CERN
 - It provided the model for the other ALICE SEs
 - NIHAM is currently operating the largest ALICE SE@T2 (120TB)
 - A test site for new software and procedures
- In 2007 ISS also deployed an efficient and wellmaintained T2
- NIHAM is the entry point for the ALICE usage of the Romania ALICE official LCG site (RO-07-NIPNE)

And Romania?

- According to LCG accounting NIHAM delivered ~60% of all CPU resources delivered by Romanian Tier2 Federation (ROT2F) to LHC
 - This represents ~74% of the CPU time delivered by ROT2F to ALICE
 - For the time being the NIHAM centre is not supported by Romania LCG
- NIHAM alone delivered 167% of the resources pledged to ALICE.
 - ISS and RO-07-NIPNE faired also well
- ROT2F delivered ~67% of the pledges to LCG (including NIHAM over-performance).
- The overall Romanian contribution to ALICE computing is quantitatively around 7%, and it is qualitatively invaluable

The ALICE Grid Map

Here is the live picture

20/08/08

Control of the ALICE Grid

- Fully redundant
 - DB (MySQL) masterslave structure and backup
 - All central services run multiple instances
- Build servers for
 - I686, x86_64, ia63,MacOS 32- and 64-bit

ALICE Grid task list today

- Registration of data at MSS T0 and on the GRID
- Replication T0->T1
- Quasi-online reconstruction
 - Pass 1 at T0
 - Pass 2 at T1s
- MC production and user analysis

RAW data from cosmic tests

Replication of RAW

60MB/sec rate (p+p data taking scenario)
Using gLite transfer tools (FTS), operated through AliEn FTD

Data and MC production - emphasis

- Fast MC production for first physics with various LHC startup scenarios
 - And analysis for first publication
- Already 2 cycles made
- Fast analysis of detector calibration data
 - Essentially immediately after data taking (same day/night)
- Crucial for feedback to detector experts

Production of RAW

- Major activity in the past 6 months, very successful despite rapidly changing conditions
 - Both in the code and detector operation
 - In total some 120 TB of RAW passed through the reconstruction

Production	Description	Status	Run Range	Recorded chunks	Processed chunks	Comments
PDC 08/LHC08c_TPC	LHC08c_TPC partition	Running	47024 - 47032	36	0	RUN III cosmics - TPC
PDC 08/LHC08c	LHC08c global partition	Running	45321 - 48868	1,600	1,449	LHC08c global partition
PDC 08/LHC08b	LHCO8b global partition	Completed	34784 - 42384	57,343	55,804	RUN III cosmics
PDC 08/LHC08a	LHC08a global partition - MUON reco	Completed	21392 - 26024	8,336	7,412	RUN II cosmics (Muon)
PDC 08/LHC08a	LHC08a global partition	Completed	18047 - 26042	43,464	39,003	RUN II cosmics

MC production since 2006

Some 330Mio events with various physics content

Production	Description	Status	Run Range	Events Count
PDC 08/LHC08x	p+p, charm, forced had.decays	Completed	180001 - 180066	6,382,200 All runs staged
PDC 08/LHC08w	p+p, beauty, forced had.charm decay, PYTHIA	Completed	290001 - 290017	786,500 Residual misalignment, all run staged
PDC 08/LHC08v	jet-jet pp, PYTHIA, 15 GeV/c < Pt hard < 50 GeV/c	Completed	280001 - 280043	4,316,900 All runs staged
PDC 08/LHC08u	gamma-jet pp (2), PYTHIA, no quenching	Completed	260007 - 260036	3,036,000 All runs staged
PDC 08/LHC08t	MUON Cocktail pp, MB	Completed	170001 - 170444	194,811,500 Ideal alignment, all runs are staged
PDC 08/LHC08s	p+p, beauty, with B->J/psi->ee decay	Completed	200001 - 200003	197,400 All runs staged
PDC 08/LHC08r	jet-jet pp, PYTHIA, Pt hard > 50 GeV/c	Completed	270001 - 270028	2,900,000 All runs staged
PDC 08/LHC08q	jet-jet pp, PYTHIA, hard > 100 GeV/c	Completed	230002 - 230010	878,400 All runs staged
PDC 08/LHC08p	gamma-jet pp, PYTHIA, quenching	Completed	220001 - 260006	4,267,800 All runs staged
PDC 08/LHC08c9	First physics (stage 2) pp, Phojet, No field, 900GeV	Completed	377000 - 377002	247,950 Full misalignment/decalibration
PDC 08/LHC08c8	First physics (stage 2) pp, Phojet, 5kG, 900GeV	Completed	376000 - 376002	353,250 Full misalignment/decalibration
PDC 08/LHC08c7	First physics (stage 2) pp, Phojet, No field, 10TeV	Completed	375000 - 375002	257,700 Full misalignment/decalibration
PDC 08/LHC08c6	First physics (stage 2) pp, Pythia6, No field, 900GeV	Completed	374000 - 374002	256,050 Full misalignment/decalibration
PDC 08/LHC08c5	First physics (stage 2) pp, Pythia6, No field, 10TeV	Completed	373001 - 373002	226,950 Full misalignment/decalibration
PDC 08/LHC08c4	First physics (stage 2) pp, Phojet, 5kG, 10TeV	Completed	372000 - 372001	305,250 Full misalignment/decalibration
PDC 08/LHC08c3	First physics (stage 2) pp, Pythia6, 5kG, 900GeV	Completed	371000 - 371001	265,500 Full misalignment/decalibration
PDC 08/LHC08c2	First physics (stage 2) pp, Pythia6, 5kG, 10TeV	Completed	370000 - 370001	245,850 Full misalignment/decalibration
PDC 08/LHC08c10	T0+V0 First physics pp, 14TeV	Completed	470001 - 470021	2,950,350 Ideal geometry, V0 code buggy
PDC 08/LHC08c1	Therminator Pb+Pb, Cent.20-30%, 5.5 TeV	Pending	410002 - 410008	3,213 Full misalignment/decalibration
PDC 08/LHC08b6	First physics pp, Phojet, No field, 10 TeV	Completed	350000 - 350002	328,300 Full misalignment/decalibration
PDC 08/LHC08b5	First physics pp, Pythia6, No field, 900GeV	Completed	340000 - 340001	217,400 Full misalignment/decalibration
PDC 08/LHC08b4	First physics pp, Pythia6, No field, 10TeV	Completed	330000 - 330001	215,700 Full misalignment/decalibration
PDC 08/LHC08b3	First physics pp, Phojet, 5kG, 10TeV	Completed	320000 - 320001	219,000 Full misalignment/decalibration
PDC 08/LHC08b2	First physics pp, Pythia6, 5kG, 900GeV	Completed	310000 - 310001	429,400 Full misalignment/decalibration
PDC 08/LHC08b1	First physics pp, Pythia6, 5kG, 10TeV	Completed	300000 - 300006	431,300 Full misalignment/decalibration
PDC 07/LHC07g	MC pp, di-muon cocktail	Completed	200007 - 200317	25,446,300 Ideal geometry
PDC 07/LHC07f	MC pp min. bias for V0 studies	Completed	160000 - 160300	3,286,500 V0, Residual misalignment
PDC 07/LHC07e	MC PbPb central events, HUING	Completed	15000 - 15132	118,648 Residual misalignment
PDC 07/LHC07c	MC pp min.bias, 900 GeV	Completed	8000 - 8268	20,661,800 Ideal geometry
PDC 07/LHC07b	MC pp min.bias	Completed	6000 - 6011	1,128,300 Ideal geometry
PDC 07/LHC07a	MC pp min.bias	Completed	5000 - 5380	30,446,400 Residual misalignment and decalibration
PDC 06/06	MC pp min.bias	Completed	2000 - 2010	194,200 Vertex displacement in x 0.5 and 1 cm
PDC 06/05	MC pp min.bias	Completed	1000 - 1000	95,500 Full misalignment
PDC 06/04	MC pp min.bias	Completed	100 - 5380	51,404,500 Residual misalignment and decalibration
PDC 06/03	MC single-muon events	Completed	700 - 777	12,202,450 Residual misalignment and decalibration
PDC 06/02	MC di-muon events	Completed	503 - 596	4,882,200 Residual misalignment and decalibration
PDC 06/01	MC jet kinematics	Completed	1 - 9	1,800 42-50 GeV

Storage evolution

- Subject of intense development and deployment
 - For ALICE xrootd as single access protocol
- 4 de-facto storage solutions
 - Pure MSS CASTOR2
 - Hybrid disk+MSS dCache
 - Disk DPM, xrootd
 - Critical for analysis is the disk-based storage
- Good overall deployment progress and stability of all storage types
- Secure access through the ALICE security envelope every operation is authorized through unique set of encrypted keys

Storage deployment

38 storage endpoints over 21 sites, ~1.5 PB

			Storag	je element	ts	
SE Name	AliEn name	SE Status	Size	Used	Free	Usage
1. Bari - dCache	ALICE::Bari::dCache	OK	9.77 TB	1.216 TB	8.553 TB	12.45%
2. Catania - DPM	ALICE::Catania::DPM	OK	45.63 TB	16.55 TB	29.08 TB	36.27%
3. CCIN2P3 - dCache	ALICE::CCIN2P3::dCache	ok	90.84 TB	18.65 TB	72.19 TB	20.53%
4. CCIN2P3 - dCache_sink	ALICE::CCIN2P3::dCache_sink	ok	838.2 TB	33.26 TB	804.9 TB	3.968%
5. CCIN2P3 - dCache_tape	ALICE::CCIN2P3::dCache_tape	ок	838.2 TB	32.21 TB	806 TB	3.842%
6. CERN - C2PPS	ALICE::CERN::C2PPS	OK	-	5.855 GB	-	-
7. CERN - Castor2	ALICE::CERN::Castor2	OK	931.3 TB	496.8 TB	434.5 TB	53.35%
8. CERN - Castor2X	ALICE::CERN::Castor2X	OK	931.3 TB	33.76 GB	931.3 TB	0.004%
9. CERN - DPM	ALICE::CERN::DPM	Not responding	-	-	-	-
10. CERN - se	ALICE::CERN::se	OK	5.588 TB	1.588 TB	4 TB	28.41%
11. CNAF - Castor2	ALICE::CNAF::Castor2	ok	30.73 TB	25.01 TB	5.725 TB	81.37%
12. CNAF - CASTOR2_sink	ALICE::CNAF::CASTOR2_sink	ok	931.3 TB	106.7 TB	824.6 TB	11.46%
13. FZK - dCache	ALICE::FZK::dCache	ок	423.8 TB	2.532 TB	421.2 TB	0.598%
14. FZK - dCache_sink	ALICE::FZK::dCache_sink	OK	2.728 PB	104.5 TB	2.626 PB	3.742%
15. FZK - dCache_tape	ALICE::FZK::dCache_tape	OK	2.728 PB	51.43 TB	2.678 PB	1.841%
16. GSI - dCache	ALICE::GSI::dCache	OK	953.7 GB	953.7 GB	9.069 MB	100%
17. GSI - se	ALICE::GSI::se	OK	35.01 TB	23.93 TB	11.08 TB	68.36%
18. GSI - se_tactical	ALICE::GSI::se_tactical	ok	27.94 TB	200.4 GB	27.74 TB	0.7%
19. ISS - File	ALICE::ISS::File	ok	4.581 TB	1.603 TB	2.978 TB	35%
20. ITEP - DPM	ALICE::ITEP::DPM	OK	23.44 TB	2.942 GB	23.43 TB	0.012%
21. JINR - dCache	ALICE::JINR::dCache	ОК	51.76 TB	779.9 GB	51 TB	1.471%
22. Legnaro - dCache	ALICE::Legnaro::dCache		-	-	-	-
23. NDGF - dcache	ALICE::NDGF::dcache	OK	68.36 TB	21.73 TB	46.63 TB	31.79%
24. NDGF - dCache_sink	ALICE::NDGF::dCache_sink	OK	838.2 TB	25.3 TB	812.9 TB	3.018%
25. NDGF - dCache_tape	ALICE::NDGF::dCache_tape	OK	24.21 TB	24.38 GB	24.19 TB	0.098%
26. NIHAM - File	ALICE::NIHAM::File	ок	39.12 TB	8.38 TB	30.74 TB	21.42%
27. PNPI - DPM	ALICE::PNPI::DPM	ok	27.34 TB	5.588 GB	27.34 TB	0.02%
28. Prague - Disk	ALICE::Prague::Disk	OK	1.267 TB	1.267 TB	1 KB	100%
29. Prague - Disk2	ALICE::Prague::Disk2	ОК	19.4 TB	9.318 TB	10.08 TB	48.03%
30. RAL - Castor2	ALICE::RAL::Castor2	OK	931.3 TB	0.341 GB	931.3 TB	0%
31. RAL - Castor2_sink	ALICE::RAL::Castor2_sink	OK	90.95 PB	0.351 GB	90.95 PB	0%
32. RRC-KI - DPM	ALICE::RRC-KI::DPM	ok	113.3 TB	2.971 GB	113.3 TB	0.003%
33. SARA - dcache	ALICE::SARA::dcache	ok	0	0	0	-
34. SARA - dCache_sink	ALICE::SARA::dCache_sink	ok	0	0	0	-
35. SARA - dCache_tape	ALICE::SARA::dCache_tape	ok	0	0	0	-
36. SPbSU - DPM	ALICE::SPbSU::DPM	OK	5.402 TB	31.22 GB	5.371 TB	0.564%
37. Subatech - DPM	ALICE::Subatech::DPM	OK	40.04 TB	4.715 TB	35.32 TB	11.78%
38. Torino - DPM	ALICE::Torino::DPM	OK	16.78 TB	1.083 TB	15.7 TB	6.454%

Current operation principle

- The VO-box system (very controversial in the beginning)
- Has been extensively tested
- Allows for site services scaling
- Is a simple isolation layer for the VO in case of troubles

Operation – central/site support

- Central services support (2 FTEs equivalent)
 - There are no experts which do exclusively support there are 6 highly-qualified experts doing development/ support
- Site services support handled by 'regional experts' (one per country) in collaboration with local cluster administrators
 - Extremely important part of the system
 - In normal operation ~0.2FTEs/regions
- Regular weekly discussions and active all-activities mailing lists

User analysis activities

- Generally successful
- User jobs priorities are well mastered in the AliEn system
- Simple priority scheduling seem to work well, will be expanded soon to 'pay for what you use' principles
- Storage remains a weak point
 - Only the lack of it available amount does not allow full (as per computing model) replication of data to be analysed
- As of today, 180 registered, 110 active users on the Grid
 - Not counting the MC/RAW production and CAF

User analysis statistics, one year

Monitoring, monitoring, monitoring

Status of the user proxy

Status of the alice-box-proxy

Status of the Proxy Server Status of the Proxy of the

							Mach	ine st	ntus (I	ast ho	ur av	verage	values	:)								Machine status (last hour average values)														
		СРИ											Mem [% MB]	Swap [% MB]	Eth0	[KB/s]		Eth1 [KB/s]		Eth2 [KB/s]		System												
Site name	Last see online	Load5	User	System	IOWait	Int	SoftInt	Nice	Steal	Idle	Cnt	MHz	Usage	Total	Usage	Total	In	Out	In	Out	In	Out	Procs	Socks												
1. Aalborg	2007-02-01 09h	0.92	4.799	0.833	7.023	0.024	0.316	0	0	87	2	2793	77	2026	12.87	3121	8.181	8.038	55.49	2.278	-	-	169	14												
2. Athens	2007-01-29 21h					-		-	8-	-	-	-	-	-	-		-	-	-	-	-	-	-													
3. Bari	2007-01-22 11h				-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-													
4. Birmingham	2007-02-01 09h	0.201	7.804	1.719	0.166	0.014	0.29	0	8-	90.01	2	800	55	1001	7.468	2047	13.54	34.98	-	-	-	-	94	3												
5. BITP	2007-02-01 09h	0.411	1.026	0.431	12.28	0.018	0.215	0		86.03	4	3192	23	3999	0	8181	41.03	43.81	11.14	2.092	-	-	94	9												
6. Bologna	2007-02-01 09h	0.063	1.208	0.479	0.077	0.003	0.114	0		98.12	4	3067	19	4005	0	2000		-	17.35	7.977	-		94	4												
7. Cagliari	2007-02-01 09h	0.058	2.867	1.089	0.092	0.015	0.273	0	16-	95.66	2	3199	34	2007	0	2000	22.28	11.75	-	-	-		90	5												
B. Catania	2007-02-01 09h	0.202	3.447	0.965	0.725	0.017	0.17	0		94.68	4	2799	38	2006	0	4094	32.47	18.77	-	-		-	85	5												
9. CCIN2P3	2007-02-01 09h	16.76	24.77	54.19	1.643	0.035	0.254	0	16	19.11	4	3000	51	2007	12.41	2047	1.683	0.093	32.87	21.05		-	250	22												
10. CERN	2007-02-01 09h	1.019	16.86	4.55	1.106	0.037	0.893	0		76.56	4	2388	52	5768	2.959	8000	91.44	62		-		-	539	117												
11. CERN_gLite	2007-02-01 09h	0.099	3.849	1.337	0.388	0.005	0.164	0	16	94.26	2	3000	17	3995	0	4094	9.95	1.712	-	-	-	-	96	3												
12. CERN-L	2007-02-01 09h	0.731	12.26	3.18	1.942	0.04	0.27	0		82.3	2	2793	22	3991	0	4094	34.33	14.08	-	-			119	5												
13. CERNMAC	2007-02-01 09h				12	-		-	16-	-	-	-	-	-			-	-	-	- 2	-	-														
14. Clermont	2007-02-01 09h	0.081	5.753	1.057	0.012	0.167	0.164	0		92.85	1	2007	18	3013	0.007	8189	18.43	9.165	-	-	-	-	109	5												
15. CNAF	2007-02-01 09h	0.023	1.519	0.687	0.071	0.011	0.164	0	16-	97.55	2	3067	9	4005	0	4000	14.37	5.678	-	-	-	-	89	3												
16. Cyfronet	2007-02-01 09h	0.037	1.708	0.296	0.288	0.011	0.073	0	8-	97.62	2	1300	34	1982	0.186	1000	-	-	16.36	11.06	-	-	70	3												
17. FZK	2007-02-01 09h	3.023	14.71	5.382	27.56	0.02	0.278	0	16	52.06	4	3000	67	2007	8.054	3827	23.81	15.24	51.01	84.12	Elle	e <u>E</u> c	dit <u>V</u> ie	ew G												
18. GRIF_DAPNIA	2007-02-01 09h	0.118	6.042	1.096	0.133	0.053	0.105	0	S-	92.57	- 1	2793	25	2001	0	2047	19.4	12.04	-	-	1		4	1												
19. GSI	2007-02-01 09h	0.182	8.336	1.751	0.07	0.023	0.253	0	0	89.57	1	2667	58	820.9	0	512	42.78	23.17			Ba	ck	Fonward													
20. Houston	2007-02-01 09h	0.05	2.898	0.578	0.049	0.011	0.347	0	S-	96.12	1	1396	29	4014	13.04	4095	0.015	0.034			· A	Home	1 kpa	okmark												
21. IHEP	2007-01-31 10h				-	-		-	-	-	-	-	-	-	-		-	-			211	noine	* BO	okniark												
22. IPNO	2007-02-01 09h	0.072	1.824	0.727	0.06	0.003	0.116	0	S-	97.27	2	2394	15	3994	0	1992	16.51	8.048																		
23. ISS	2007-02-01 09h	1.943	4.217	3.768	15.06	0.16	0	0	-	76.8	4	2392	67	1009	49.62	996.2	2575	597.5						-												
24. ITEP	2007-02-01 09h	0.073	2.831	0.892	0.464	0.008	0.161	0		95.65	2	2999	60	1000	3.843	1992	18.25	10.2																		
25. JINR	2007-02-01 09h	0.065	2.603	0.864	0.228	0.052	0.261	0	16	95.99	2	2793	47	2005	0	2047	20.68	243.4																		
26. Jyvaskyla	2006-12-12 14h		-			-				-	-		-	-			-		Ť																	
27. KFKI	2007-02-01 09h	0.071	2.479	0.908	0.089	0.013	0	0	-	96.51	2	3392	15	4052	0	4094	16.3	8.323	t																	
28. KISTI	2007-01-25 18h			-		-	-												Ť																	
29. KNU	2007-02-01 09h	1.585	34.8	18.96		-		0		46.24	2	1000	54	1008	4.4	1913	32.55	63.95																		
30. Kolkata	2007-02-01 09h	0.215	2.486	2,308	4.128	0.021	0.273	0		90.78	4	2399	25	3829	0	2000	0.541	0.425	t																	

- Standard SAM tests to check LCG services availability are incorporated in the VO-box
- Available to Grid Support and ALICE (via ML)

ehMail / Radio / People / Yellow Pages / Download / Calendar 📅 Channels / Members / WebMail / Connections / Biz Jour

aubiect has failed and problem

Tests Displayed

Status of the VOBOX, ALICE and WLCG services are monitored through ML

- Sites are encouraged to check the status through these pages
- Alarm system established

20/08/08

Today, ALICE is ready...

20/08/08

Getting ready for the first school day

- In 6 short years the ALICE Grid has been transformed from a 'proofof-concept' into a fully operational computational platform for ALICE offline work
- The ALICE computing model has been validated thoroughly through a series of data challenges with increasing complexity and scope
- The ALICE Grid today uses CPU and storage resources at some 73 computing centres, fully integrated into the local fabric and services
- The MC and RAW data production is a routine exercise, moving rapidly into an automated mode of operation
- User analysis is a routine exercise too...
- Services support on all levels is well understood
- The ALICE Grid is ready for its first day in school, coming, as usual, at the beginning of September

