Baseline Detector Setup

Tracking: STS, TRD Vertexing: STS Hadron ID : TOF Electron ID: RICH, TRD, ECAL Y, n: ECAL

The Challenge:

• very rare probes in Au+Au at reaction rates up to 10⁷ events/sec

• ~ 1000 charged particle mult/event

	ALICE - TRD	ATLAS - TRT
- type (radiator+drift chamber + MWPC)		(radiator + straw tubes)
- π_{rej} (at 90% e efficiency	y) ~100-200	~100
- Maximum drift time	2 µs	40 ns
- Counting rates	~ 100 part/sec/cm ²	~ 10 ⁶ part/sec/cm ²
- Granularity (channel s	size) high (~6 cm ²)	low (~20cm ²)

CBM - TRD	
Counting rates ~ 10 ⁵ part/sec/cm ²	
High granularity	
- π_{rej} (at 90% e efficiency) > 100	

First HCRTRD - prototype

⁵⁵Fe Source Tests

In beam test, July 2004

(detector performance in high counting rate environment)

High Counting Rate Effect p-2GeV/c

High Counting Rate Effect Position Resolution (p-2GeV/c)

e/π Discrimination

Yuhei Morino – ALICE TRD

Double - sided pad plane HCRTRD prototype

3 type of prototypes

Kapton 25 µm

Mylar 3 µm

⁵⁵Fe Source Tests

In beam experimental setup

Average Charge Distribution on pads

2 rows of 8 pads each readout for each detector

Pulse Height and Charge Spectra

Fast TRD tests

Fast TRD tests

High Counting Rate Effect Xe,CO₂(10%), p-2 GeV/c

High Counting Rate Effect Xe,CO₂(15%), p-2 GeV/c

*High Counting Rate Effect Xe,CO*₂(20%), p-2 GeV/c

High Counting Rate Effect Xe,CO₂(15%), p-1.5 GeV/c

High Counting Rate Effect Xe,CO₂(10%), p-2 GeV/c

High Counting Rate Effect Xe,CO₂(15%), p-2 GeV/c

High Counting Rate Effect Xe,CO₂(20%), p-2 GeV/c

2 GeV/c, U=1650 V, Xe,CO₂(10%), Xe,CO₂(20%)

Rate Dependence for 30^o Tilted Chamber

1800 V

Rate Dependence of the Position Resolution

Rate Dependence of the Position Resolution

Independent analysis (M. Hoppe, Münster) supports results:

Electron Identification

e/pi discrimination performance

Xe,CO2(15%) 1 GeV/c 1800 V

1.5 GeV/c

e/π discrimination performance 1.5 GeV/c $log(p_e/p_\pi)$ $p_e/(p_e + p_\pi)$

⇒ 1800 V, foils, ~0.7 % π rejection
20/500/120 ⇒ 20/200/220, 1.4 better

e/π discrimination performance

Xe,CO2(15%)

e/π discrimination performance ALICE - TRD

e/π discrimination – counting rate dependence

3 single cell 3 µm mylar not tested

•TRD based on compact geometry MWPC works up to > 2•10⁵ particles/cm²/sec with negligible change of pulse height or charge (~2-3%)

•The position resolution at low rate is ~160 µm; the observed degradation is ~20 µm at 2•10⁵ particles/cm2/sec;

•A double-sided pad readout electrode brings the performance of these TRD at a π rejection factor of ~200 for 6 layers using appropriate foil stack radiator.

> The solution for: -high counting rate - high granularity - high e/π rejection factor - minimum material budget - minimum electronic channels

Double sided read-out pad plane electrode prototype :

NIPNE-Bucharest

D. Bartos I. Berceanu M. Petrovici V. Catanescu V. Simion A. Herghelegiu P. Dima C. Magureanu A. Radu **D.** Moisa

M. Petris

University of Münster

M. Hoppe A. Wilk J.P. Wessels

In beam tests :

GSI - Darmstadt

A. Andronic P. Braun-Munzinger C. Garabados J. Hehner M. Kalisky

C. Lippmann **D.** *Miskowiecz* R. Simon H. Stelzer F. Uhling

University of Frankfurt

H. Appelshäuser

University of Heidelberg

D. Emschermann I. Rusanov H.K. Solveit J. Stachel

JINR Dubna

V. Babkin V. Golovatiouk S. Chernenko Yu. Zanevsky V. Geger V. Zryuev