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Dilepton production at HADES: theoretical predictions
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Dileptons represent a unique probe for nuclear matter under extreme conditions reached

in heavy-ion collisions. They allow to study meson properties, like mass and decay width,

at various density and temperature regimes. Present days models allow generally a good

description of dilepton spectra in ultra-relativistic heavy ion collision. For the energy regime

of a few GeV/nucleon, important discrepancies between theory and experiment, known as

the DLS puzzle, have been observed. Various models, including the one developed by the

Tübingen group, have tried to address this problem, but have proven only partially successful.

High precision spectra of dilepton emission in heavy-ion reactions at 1 and 2 GeV/nucleon

will be released in the near future by the HADES Collaboration at GSI. Here we present the

predictions for dilepton spectra in C+C reactions at 1 and 2 GeV/nucleon and investigate up

to what degree possible scenarios for the in-medium modification of vector mesons properties

are accessible by the HADES experiment.

PACS numbers: 12.40Vv,25.75.-q,25.75Dw

I. INTRODUCTION

Heavy ion reactions present an unique opportunity for the study of nuclear matter under ex-

treme conditions allowing a comprehensive analysis of the phase structure of the underlying theory

of strong interactions. In this process electromagnetic probes such as dileptons have been proven

to be most effective since they leave the reaction zone essentially undistorted by final state inter-

actions. They provide thus a clear view on effective degrees of freedom at high baryon density and

temperature. It has been argued that their differential spectra could reveal information about chiral

restoration and in-medium properties of hadrons [1, 2, 3]. Theoretically, there exists an abundance

of models that predict a change of vector meson masses and widths in high density/temperature

nuclear matter: Brown-Rho scaling [1] is equivalent with a decrease of vector meson masses in

nuclear medium; models based on QCD sum rules [2] and effective hadronic models [4, 5] reach

similar conclusions.

Experimentally, dilepton spectra have been measured at two different energy regimes: the

CERES [6, 7], HELIOS [8] and recently NA60 [9] at CERN have measured dielectrons and dimuons,

http://de.arXiv.org/abs/nucl-th/0601059v3
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respectively, in heavy ion reactions at 158 GeV/nucleon. In proton-nucleus reactions the sum over

all measured hadronic sources, i.e. the so-called hadronic cocktail, describes the corresponding

dilepton spectra perfectly well. However, in heavy systems (Pb+Au) a significant enhancement of

the dilepton spectra below the the ρ and ω peaks has been observed relative to the corresponding

hadronic cocktail. Such a behaviour could be explained theoretically, within a scenario of a drop-

ping ρ vector meson mass [10] or by the inclusion of in-medium spectral functions for the vector

mesons [11, 12]. The recent NA60 dimuon spectra with high resolution in the vicinity around the

ρ−ω peak seem to rule out a naive dropping mass scenario but support the picture of modified ρ−ω

spectral functions. An enhanced strength below the ω peak has also been observed in γ-nucleus

reactions [13]. A second set of heavy ion experiments have been performed at laboratory energies of

1.0 AGeV (Ca+Ca and C+C) by the DLS Collaboration at BEVALAC [14, 15]. Also in this case,

the low mass region of the dilepton spectra is underestimated by present transport calculations, in

contrast with similar measurements (1.04 - 4.88 GeV/nucleon) for the p+p and p+d systems. As

opposed to the ultra-relativistic case, the situation does not improve when the in-medium spectral

functions or the dropping mass scenarios are taken into account [12, 16] (the DSL puzzle). Other

scenarios like possible contributions from the quark-gluon plasma or in-medium modifications of

the η mass have been excluded as a possible resolution of this puzzle. Decoherence effects [17] have

been proven to be partially successful in explaining the difference between the DLS data and the

theoretical predictions.

Recently, a new measurement by the HADES Collaboration at GSI has been completed and the

results will be published in the near future [18]. The aim of this second generation experiment is to

measure dilepton spectra in A+A, p+A and π+A reactions with an unprecedented mass resolution

(∆M/M ≃ 1%(σ)) over the entire spectrum [19]. Such a resolution allows to measure the in-

medium properties (mass and width) of ρ and ω mesons through their decays into dielectron pairs

in nuclear matter with high precision and will put strong constraints on theoretical models. This

letter presents predictions of the dilepton production in C+C reactions at 1.0 and 2.0 AGeV which

are those reactions where first data from HADES will be available in the near future. The vector

meson and dilepton production is described within the framework of the resonance model developed

in [20, 21, 22] in combination with the relativistic quantum molecular dynamics (RQMD) transport

model for heavy ion collisions [17]. The influence of medium effects such as quantum decoherence,

collisional broadening and a dropping vector meson mass are investigated. The paper is organised

as follows: in Section II we give a brief description of the elementary reactions which contribute

to dilepton emission in heavy ion collisions, together with an outline of the RQMD model. Section
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III is devoted to the presentation of our prediction for the differential mass spectrum of dilepton

production in 1.0 and 2.0 AGeV C+C collisions. We conclude with Section IV.

II. THE MODEL

A. Elementary dilepton sources

The elementary sources of dilepton production in heavy ion reaction in the energy range of

a few GeV/nucleon are numerous. One can identify three main classes of processes that lead to

dilepton emission: nucleon-nucleon bremsstrahlung, decays of light unflavoured mesons and decay

of nucleon and ∆ resonances. For the energy range of interest in this paper dilepton generation

through nucleon-nucleon bremsstrahlung is unimportant. Feynman diagrams of processes belonging

to the last two classes are depicted in Fig. (1).

At incident energies of 1 AGeV the cross-sections for meson production M = η, η′, ρ, ω, φ are

small and these mesons do not play an important role in the dynamics of heavy-ion collisions.

Their production can thus be treated perturbatively, in contrast to the case of the pion. The decay

to a dilepton pair takes place through the emission of a virtual photon. The differential branching

ratios for the decay of a meson to a final state Xe+e− can be written

dB(µ,M)M,π→e+e−X =
dΓ(µ,M)M,π→e+e−X

ΓM,π
tot (µ)

, (1)

with µ the meson mass and M the dilepton mass. Three types of such decays have been considered:

direct decays M → e+e− (Fig. 1a), Dalitz decays M → γe+e−, M → π(η)e+e− (Fig. 1b) and

four-body decays M → ππe+e− (Fig. 1c). A comprehensive study of the decay of light mesons to a

dilepton pair has been performed in [20], the decay channels there are most important quantitatively

for heavy-ion collisions at 1 and 2 GeV/nucleon being π0 → γe+e− and η → γe+e−.

The third source for dilepton emission we have mentioned was the decay of baryonic resonances

(see Fig. 1d). For the description of this process an extension of the vector meson dominance

(VMD) model has been employed [20, 21]. The original VMD model assumes that decays of

baryon resonances run through an intermediate virtual meson (ρ or ω) required for the description

of the form-factors entering in the calculation of the radiative (R → Nγ) and mesonic (R → NV )

decays. Such a model does not allow the simultaneous description of both radiative and mesonic

decays [5, 22, 23]. Furthermore the quark counting rules require a stronger suppression of the

transition form-factor than the 1/t behaviour predicted by the naive VMD. Similarly the ωπγ

transition form-factor shows an asymptotic 1/t2 behaviour [24]. An extension of the VMD to allow
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FIG. 1: Feynman diagrams of the elementary processes contributing to dilepton emission: a) direct decay

of a vector meson (ρ, ω, φ) to a dilepton pair going through an intermediate photon (VMD model); b) Dalitz

decays of a vector (V), pseudo-scalar (P) or scalar meson (S) into a dilepton pair and a photon or a pseudo-

scalar meson (η or π);c) four-body decay into a dilepton pair plus two pseudo-scalar mesons (the hashed

vertex represents an intermediate state containing a vector mesons and/or virtual photon - see Ref. [20]);

and d) the decay of a nucleon or ∆ resonance into a nucleon plus a virtual vector meson (extended VMD)

which then decays into two dileptons.

contributions from radially excited vector mesons (ρ(1250), ρ(1450),. . . in Ref. [21]) that interfere

destructively with the ground state vector mesons (ρ in this example) allow for a resolution of

the mentioned problems of the original VMD and describe the radiative and mesonic decays in a

unitary way.

In terms of the branching ratios for the Dalitz decays of the baryon resonances, the cross section

for e+e− production from the initial state X ′ together with the final state NX can be written

dσ(s,M)X
′→NXe+e−

dM2
=

∑

R

∫

√
s−mX)2

(mN+M)2
dµ2 (2)

×
dσ(s, µ)X

′→RX

dµ2

∑

V

dB(µ,M)R→V N→Ne+e−

dM2
,

where µ is the mass of the baryon resonance R which has the production cross-section

dσ(s, µ)X
′→XR and dB(µ,M)R→V N→e+e− being the differential branching ratio for the decay of

the resonance R → Ne+e− through the vector meson V . The initial state X ′ could consist of two

baryons (X ′ = NN,NR,RR′) or of one nucleon and a pion (X = πN). The dilepton decay rate

can be found, once the width Γ(R → Nγ∗) is known by using the factorisation prescription

dΓ(R → Ne+e−) = Γ(R → Nγ∗)M Γ(γ∗ → e+e−)
dM2

πM4
, (3)
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with

MΓ(γ∗ → e+e−) =
α

3
(M2 + 2m2

e)

√

1 −
4m2

e

M2
. (4)

The decay width Γ(R → Nγ∗) is described within the extended VMD model [21] in terms of three

transition form-factors (magnetic, electric and Coulomb) in case of a resonance with spin J > 1/2

and two for J = 1/2, which is just the number of independent helicity amplitudes for the respective

spin value. The free parameters of the model are fixed by constraining the asymptotic form of the

form-factors by quark counting rules [25] and fitting to the experimental data for photo-production

and electro-production amplitudes and partial-wave analysis for multichannel πN scattering. The

number of intermediate ρ or ω states required to describe the transition form-factors depends on

the spin J of the resonance in question: namely J − 1/2 + 3. For the case that Jmax = 7/2 one

needs 6 intermediate mesons, with the masses chosen as follows: 0.769, 1.250, 1.450, 1.720, 2.150

and 2.350 (in GeV). Within this model a consistent description of radiative and mesonic decays

could be achieved. Further details about the extended VMD can be found in Ref. [21].

As already mentioned the decay widths Γ(R → Nγ∗) are expressed in terms of the magnetic,

electric and Coulomb form-factors, more precisely they depend on the modulus squared of these

form-factors. In the extended VMD each of these form-factors is in turn expressed as a linear

superposition of the contributions from the intermediate vector mesons (ρ or ω):

G
(±)
T (M2) =

∑

k

M
(±)
Tk (5)

with T standing for each of possible form-factors, (±) denotes states of normal and abnormal parity

respectively and the sum is over the intermediate mesons. The amplitude

M
(±)
Tk = h

(±)
Tk

m2
k

m2
k − imkΓk − M2

(6)

represents the contribution of the kth vector meson to the amplitude of type T . The residues h
(±)
Tk

are fixed by the requirement that the asymptotic expression of the form-factors is consistent with

the quark counting rules [25]. This leads to a destructive interference between the intermediate

vector mesons, since quark counting rules predict a behaviour steeper for the form-factors than the

1/M2 contribution of a single meson. In the medium it is expected that the coherence between the

contributions of individual mesons is at least partially lost. In the extreme case of total decoherence,

this would lead to the following replacement in the expression for the decay width,

|
∑

k

M
(±)
Tk |

2
−→

∑

k

|M
(±)
Tk |2 , (7)
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which will result in an enhancement of the resonance contributions. In reality both, the density

and wavelength of the meson are finite. Introducing the decay length LD of a resonance and its

collision length LC one can determine the probability of coherent decay (i.e. the meson decay takes

place before the first collision) as w = LC

LC+LD
. In order to account for the decoherence effect, one

can introduce an enhancement factor ET (M2, ~Q2),

|G
(±)
T (M2) |2 −→ E

(±)
T (M2, ~Q2) ) |G

(±)
T (M2) |2 , (8)

The dependence on the space-like part ~Q of the vector meson momentum originates from the

definition of the collision length LC . Further details can be found in Ref. [17].

B. The RQMD model

The heavy-ion reaction dynamics is described within the framework of relativistic quantum

molecular dynamics. The Tübingen (R)QMD transport code [26] has been extended to include all

nuclear resonances with masses below 2 GeV, in total 11 N∗ and 10 ∆ resonances. A full list with

the corresponding masses and decay widths to various channels can be found in Tables III and IV

of Ref. [17]. For the description of dilepton production through baryonic resonances, respectively,

the ρ and ω production in NN and πN reactions, only the well established (4∗) resonances listed

by PDG [27] are taken into account. This corresponds to the same set of resonances which has been

used for the description of vector meson and dilepton production in elementary (p+p) reactions

[22, 28], see also [17, 29]. As necessary for the present investigations, it provides e.g. an accurate

reproduction of the measured pion yields in C+C reactions [30] within error bars. For the case of

the η meson, the fit of Ref. [31] is used and therefore the production through the decay of nucleonic

resonances is completely neglected. A check of the two production mechanisms NN → NNη and

NN → RN → NNη has been performed leading to an almost similar η yield in heavy ion reactions.

η absorption runs over the N∗(1535) resonance. The corresponding η production cross sections in

C+C collisions are consistent with the experimental results of Ref. [32].

III. PREDICTIONS FOR HADES

It is expected that in nuclear matter the ρ and ω mesons change their properties. Estimates

for the collisional broadening of ρ in hadronic matter (nuclear matter or pionic gas) predict a

collisional width of the order of the vacuum width. For the ω the vacuum width is only 8.4 MeV

whereas in medium is expected to be more than one order of magnitude larger. The dilepton
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FIG. 2: Dilepton spectrum in C+C at 1 AGeV (left panel) and 2 AGeV (right panel). Besides the

vacuum calculation (dashed line) four different scenarios for in-medium modifications of the dilepton yield

are presented. The full in-medium calculation (full line) takes into account Brown-Rho scaling for the vector

meson masses, collisional broadening (Γtot

ρ
=250 MeV, Γtot

ω
=125 MeV) and decoherence effects. The three

other in-medium calculations differ from the full one in the following respects: Γtot

ρ
=150 MeV (vacuum

value) for the dashed-dotted curve, no decoherence effects for the dotted curve, and Γtot

ρ
=200 MeV together

with Γtot

ω
=60 MeV (double-dot-dashed curve).

spectra at intermediate energies, like those probed by the HADES and also the DLS experiments,

are more sensitive to the ω meson collisional broadening. In absence of such modifications the

invariant mass dilepton spectrum would show a pronounced ω peak. In the DLS experiment such

an enhancement has not been observed. Despite the limited mass resolution in [17] an in-medium ω

width of Γtot
ω = 100÷300 MeV at nuclear matter density ρ = 1.5ρ0 has been extracted from the DLS

data. The modification of the ρ width was found to be similar in magnitude, i.e. Γtot
ρ = 200÷ 300

MeV (again at ρ = 1.5ρ0). In the present calculations a linear density dependence of the ρ and ω

decay widths is assumed, i.e. Γtot
V = Γvac

V +ρ/ρ0Γ
coll
V . As an additional in-medium effect the masses

of the mesons are supposed to vary as a function of the nuclear matter density at the point where

the resonance decay occurs, following a Brown-Rho scaling law m∗
V = mV (1 − αρ/ρ0) with ρ the

local baryon density and α = 0.2. In contrast to [17] the dropping mass scenario is now included

in addition to the collisional broadening and decoherence medium effects.

A second medium effect is the due to decoherence, which mostly affects the dilepton spectrum
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below the ρ/ω peak. The probability for coherent decay depends both on the in-vacuum decay

widths (through LD) and the collisional broadening (through LC). For the ground state vector

mesons the following values for the collisional widths have been adopted: Γcoll
ρ =100 MeV and

Γcoll
ω =116.6 MeV at ρ = ρ0 with the same values for their radially excited states that enter in the

built up of the extended VMD. The vacuum widths of the radially excited mesons are larger than

those of the ground state ρ and ω meson and as a consequence they tend to decay coherently. The

decoherence effect is largest for the ω vector meson since its vacuum width is very small.

The results for C+C collisions at 1 and 2 AGeV are shown in Fig. (2). Besides the dilepton

spectrum with in-vacuum properties of the intermediate mesons (depicted by a dashed line) the

effects of three different in-medium scenarios on the same spectrum are also shown. The calculation

in which all the in-medium effects are included to their full extent is depicted by a full line. This

case corresponds to maximal collisional broadening, i.e. Γtot
ω =125 MeV, Γtot

ρ =250 MeV, both at

ρ = ρ0, and it includes Brown-Rho scaling for the meson masses and decoherence effects.

The remaining three calculations provide insight on the significance of the individual in-medium

effects, even tough strictly speaking they cannot be disentangled. The variation of the ρ meson

width between Γtot
ρ = 150 ÷ 250 MeV leads to a modification of the dilepton yield by a factor of 2

in the dilepton mass range 0.5-0.8 GeV (compare the full and dashed-dotted curves). Decoherence

effects in nuclear medium are responsible for at most a 50% change in the dilepton spectra at

intermediate masses (dotted and full lines).

Some of the ω mesons, produced in the final stages of the collision or at the surface of the

interaction region might escape with vacuum properties and thefore lead to a small peak in the

dilepton cross-section. The density dependent meson widths include these possibilties. To explore

the possibility of a reminiscent ω peak in more detail an additional calculation with a moderate

in-medium ω width Γtot
ω = 60 MeV, together with Γtot

ρ =200 MeV, (again at ρ0) is shown. It should

be noted that such a value for Γtot
ω is in agreement with the analysis of [13] from photo-nucleus

reactions. An increase of at most 50% in the dilepton yield is observed with respect to the full

’in-medium’ scanario in the 0.4-0.8 GeV mass region, with no sign of a sharp peak.

The effect of the Brown-Rho scaling is well known: it produces a shift of the ρ/ω peak from

its vacuum position towards lower dilepton invariant masses, namely around 0.6 GeV. The peak

dissolves once the width of the ω meson is changed to its in-medium value. All results have

been obtained with a strong N∗(1535)Nω coupling as enforced by the fit of the resonance model

parameter to nucleon resonance electro- and photo-production [21] and which has been used in
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FIG. 3: Dilepton spectrum in C+C reactions at 1.0 and 2.0 AGeV after application of the full HADES

acceptance filter. Calculations without (vacuum) and including in-medium effects (in-medium), i.e. maximal

ρ and ω collisional broadening, mass shifts and decoherence, are shown.

[17, 28].

The results of Fig. (2) are pure theoretical results, i .e. they have not been filtered in order to

account for the experimental detector acceptance. Such a procedure is, however, indispensable for a

meaningful comparison to data. In order to investigate up to what degree the HADES experiment

will be able to discriminate between the different scenarios, we apply in the following the full

HADES acceptance filter in combination with a smearing procedure for the corresponding HADES

mass resolution. The filtered results are shown in in Fig. 3. The ’in-medium’ calculation contains

the combination of all medium effects under consideration, i.e. ρ and ω collisional broadening and

mass shifts and decoherence (corresponding to the full lines in Fig. (2)). The spectra are normalised

to the number of events Nev and to the π0 multiplicity. Contributions from π0 and η Dalitz decay

are shown separately. The difference between the ’vacuum’ and the ’in-medium’ calculation is still

clearly visible: most pronounced are the medium effects in the mass region around the ρ/ω peak

(M ∼ 0.6÷1 GeV) where a complete dissolution of the ρ and in particular the ω peak is predicted.

This effect is even more pronounced at 2 AGeV and the HADES experiment will be able to clearly

discriminate between the ’vacuum’ and the ’in-medium’ scenarios.

In the low and intermediate mass region the medium effects are less pronounced, i.e. of the

order of about 50%. Decoherence affects the dilepton pairs over almost the entire spectrum. It
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FIG. 4: Ratio of the dilepton spectrum in C+C reactions at 2.0 over 1.0 AGeV after application of the full

HADES acceptance filter. Calculations without (vacuum) and including in-medium effects (in-medium), i.e.

ρ and ω collisional broadening and mass shifts and decoherence, are shown.

is, however, the only source for ’in-medium’ changes at low invariant dilepton masses, below 0.4

GeV. To discriminate the various scenarios experimentally in the low and intermediate mass region

will be difficult, at least in the light C+C system. However, keeping in mind that medium effects

are often better visible at subthreshold energies as known e.g. from kaon production [29], it is

natural to build the ratio between the spectra at 1 and 2 AGeV. This is done in Fig. (4) where the

ratio of the dilepton spectra at 1 and 2 AGeV for the ’in-vacuum’ (dashed line) and ’in-medium’

(full line) scenarios are plotted. Here aswell the theoretical predictions have been filtered using

the HADES acceptance filter which allows to infer the correctness of the conjecture concerning the

relevance of such effects directly from experiment. From Fig. (4) one observes a stronger in-medium

enhancement of the low mass yield at 1 AGeV compared to 2 AGeV which results in a smaller

value for the ratio. The effect is, however at the 20-30% level which requires very high resolution

data.

IV. FINAL CONCLUSIONS

In this paper we have presented predictions for the dilepton emission in heavy ion reactions

at C+C at 1 and 2 AGeV. Experimental data for these two reactions will be available in the

near future from the HADES collaboration at GSI. A clear distinction between ’vacuum’ and ’in-
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medium’ scenarios for ρ and ω properties is possible in the mass region around the ρ/ω peak. In

particular at 2 GeV the effect from an in-medium broadening of the vector mesons is dramatic and

leads to a strong suppression of the spectrum. At low invariant masses the in-medium effects, in

particular the decoherence, are less pronounced, i.e. on the 20-30% level, but can be expected to

be more clearly seen in larger systems than C+C.

We would like to acknowledge the help of our experimental colleagues from HADES who have

filtered the results of our model with the HADES filter.
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O.P.Pavlenko, and B. Kämpfer, Eur. Phys. J. A 15, 529 (2002).

[3] C.M. Shakin and W.D. Sun, Phys. Rev. C 49, 1185 (1994); M. Asakawa and C.M. Rho, Phys. Rev. C

48, R526 (1993); N. Kaiser and W. Weise, Nucl. Phys. A 624, 527 (1997).
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