

experimental context
scientific achievements in the past year
remarks on additional activities
impact
2014-2015 perspectives

ALL SA K

ALICE-a general-purpose heavy-ion experiment designed to explore ultra-dense and high temperature region of the QCD phase diagram far above the QGP transition temperature which can be produced at LHC energies

- p-p collisions - A-A collisions HMPID - p-A collisions **Observables:** $-.12 < \eta < 0.12$ $-.45 < \eta < 0.45$ $\Delta \phi = 100^{\circ}$ - Particle multiplicities: $\Delta \phi = 57^{\circ}$ - Particle spectra - Chemical and kinetic freeze-out FMD < η < -1.6 -5.4 temperature and collective flow **PMD** $-2.3 < \eta < -3.5$ - Hadron vields and chemical composition 3 - Elliptic flow and early pressure - Particle correlations - Space-time information from the radius parameter and the dynamics - Fluctuations PC+TRD+TOF: |<0.9- Jets EMCAL |n|<0. - Photons $\Delta \Phi = 110^{\circ}$ (9) - Heavy-quark production - Quarkonia production **ITS multiplicity** < n < 2 Two ways to probe the new state of matter $1.6 < \eta < 3$ FMD Use high p_T as probe Probe the bulk response Response of medium to presure 3 Partons loose energy in medium 2.4 <n < 4Muon arm Measure nuclear modification Measure elliptic and radial flow factor - RAA 4 **Partonic equation of state Parton energy loss** dE/dx, gluon density EoS 180 270 360

Physics motivation Semihard processes in QCD

- A free fast hadron is at each moment a cloud of quasireal partons which belong to a number of cascades

If a parton in the cascade meets on its way some object and interacts with it

 → the fate of the whole cascade changes – the coherence is broken
 → partons do not assembly back – continue to live and decay in secondary hadrons some times the struck cascade can interact with some other cascades

L.V. Gribov et al, Phys.Rep. 100(1983)1

 \Rightarrow MPI & rescattering

Physics motivation

Pb + Pb 2.76 TeV head on collision; b=0 Glauber approach

Event #n

Charged particles and identified charged hadrons p_T spectra as a function of multiplicity in p+p collisions at 7 TeV

Generated - combined multiplicity correlation

Multiplicity bins

	Generated (PYTHIA)						
Combined	bin limits	Mean	Sigma				
0 - 6	0 - 6	3.4	1.7				
7 - 12	7 - 12	9.1	2.2				
13 - 19	13 - 20	15.9	2.6				
20 - 28	21 - 29	23.7	3.2				
29 - 39	30 - 41	33.2	3.7				
40 - 49	42 - 51	44.1	3.7				
50 - 59	52 - 62	-	-				
60 - 71	63 - 74	-	-				
72 - 82	75 - 86	-	-				

PYTHIA tune D6T

Multiplicity dependence:

- tracking efficiency
- matching efficiency
- PID efficiency
- impurity
- feed down and secondary interactions contamination
- trigger and vertex

- systematic errors:

- tracking
- priors
- impurity
- PID efficiency
- secondary particles

Systematic errors

		standard	low	high	pions	kaons	protons
MB	TPC clusters	70	60	80	0 - 4%	1 - 5%	0 - 3.5%
	TPC χ^2	4	3	5	0.5 - $4%$	0 - 6%	0 - 6%
	DCAz	$2 \mathrm{~cm}$	1 cm	$3 \mathrm{~cm}$	<1%	0.5 - $2%$	0.5 - 1.5%
	Mismatch probability	< 0.01	< 0.009	< 0.011	<1%	0.5 - $3.5%$	1%
	TRD presence	all tracks	WITH TRD	WITHOUT TRD	1 - 6%	2 - $6%$	1 - 4%
	Tracking	dedicated study		4%	4%	4%	
	Matching	dedicated study		3%	6%	4%	
	PID priors	MB	mult < 6	mult > 49	<1%	0.5 - $2%$	0.5 - $2%$
	PID purity	none	-	$>\!80\%$	0.5 - $4%$	2 - $12%$	1 - 4%
multiplicity bins	tracking efficiency	MB	7 - 12	29 - 39	<1%	2%	1%
	matching efficiency				negligible	negligible	negligible
	PID efficiency				<1%	0 - 30%	0 - $2%$
	misidentified				<1%	<1%	<1%
	secondary particles	MB	-	mult >49	$<\!0.5\%$	-	0.5%

Charged particles p_T spectra as a function of multiplicity in p+p collisions at 7 TeV

CMS Collaboration JHEP 01(2011) 079

Identified charged hadrons p_T spectra as a function of multiplicity in p+p collisions at 7 TeV

Identified charged hadrons p_T spectra as a function of multiplicity in p+p collisions at 7 TeV

NIHAM contribution to ALICE GRID

NIHAM

+ TriGrid Catania + Trujillo + UiB + UNAM + Yerevan + ZA CHPC

Athens → Barl → Birmingham → BITP → Bologna → Bratislava → Cagliari → Catania → CCIN2P3 → CERN → CERN

TRD tracking

ALICE-TRD : residuals systematic

ALICE TRD is a 2D position sensitive detector

- constrain TPC calibration parameters
- filter particles for TOF material budget sensitive
- $r-\phi(\Delta y)$ TPC TRD matching ($\langle \Delta y \rangle$)
- linear dependence due to p, systematic
- layer to layer systematic due to η systematic
- *A/C TPC sides with different p_t systematic*
- charge asymmetry from both TPC and TRD
- $r-\phi(\Delta y)$ TPC TRD resolution ($\sigma(\Delta y)$)
- charge systematic (TRD reconstruction asymmetry)
- exponential growth with material budget
- NO η systematic

- z(Δz) TPC – TRD matching (<Δz>)

- linear dependence due to p_t systematic
- A/C sides systematic projected on the y resolution
- NO charge asymmetry
- $z(\Delta z)$ TPC TRD resolution ($\sigma(\Delta z)$)
- same resolution order as for Δy (TRUE 2D)
- η systematic from TPC conserved
- exponential growth with material budget different from $\varDelta y$

Outcome

Internal ALICE presentations, internal notes, published papers :

- 20 presentations in Spectra-PAG, PWG-LF, PWG-PP, Physics Forum and ALICE Physics Week
- 2 ALICE Internal Notes detailed review of the two analyses for preliminary figures requests
- PWG-PP tracking and alignment meeting, Thursday, 26 September 2013 Special meeting on TOF mismatch in PbPb, Thursday, 19 September 2013 CWG7 meeting, Thursday, 30 May 2013
- 14 contributions to TRD & UTRD meetings
- coauthors at 15 published papers, 6 accepted papers and > 50 contributions in conferences proceedings
- Romanian Contribution to ALICE experiment @ LHC Mihai Petrovici – IFIN-HH, on behalf of ALICE Collaboration, 10 May 2013, National Geographic
- 2 PhD Thesis
- 1 PhD student
- **ALICE upgrade:**
- In-kind contribution TPC readout chambers uing GEM technology Mariana Petris - IFIN-HH, Hadron Physics Department infrastructure for ALICE TPC upgrade https://indico.cern.ch/contributionListDisplay.py?confId=256566 ALICE-TPC Upgrade Meeting Munich, 10-12 June 2013
 - TRD upgrade

Impact

Numerous visits in DFH of Romanian and foreign delegations:

HPD-multi purpose Conference Room

Visit of more than 300 gymnasium pupils and students:

2013 CERN Open Days

Outreach: - http://niham.nipne.ro 12

Remarks on additional activities

Impact on other activities and collaborations:

In-beam test configuration of the RPCs and TRDs prototypes for CBM at T9 – PS, CERN, Oct.-Nov. 2012

Time resolution

-1000

-500

Perspectives for 2014 and 2015

TRD installation frame TRD 4/5 (top) & counterweights

Suspend Miniframe TRD 12/13/14 with yellow platform (bottom)

Perspectives for 2014 and 2015

Stage III – 11.12.2013 -10.12.2014:

- Upgrade NIHAM Analysis Facility - NAF

Efficient management of: NIHAM – ALICE GRID &

NIHAM Analysis Facility - NAF

- Finalize 1-2 papers

<u>2014-2015:</u>

- Event shape + multiplicity analysis
- Comparisons with p+Pb and Pb+Pb

2014
 p + p 14 TeV

 PbPb at higher luminosity and top energy 5.5 TeV

- Preparation of fast similar analysis once the data at the highest energy will

be available at LHC will become available