MINISTERUL CERCETĂRII ȘI INOVĂRII

Do we really need low p

measurements with CBM ?

Work done in collaboration with Amalia Pop

www.ifin.ro

HPD

HADRON PHYSICS DEPARTMENT

M. Petrovici, CBM PWG-COM meeting, April 9, 2021

Outline

- > Introduction a few general considerations
- > Examples of multi-differential analysis
- **Examples of** p_T **range for different experiments**
- Some observables worth being scanned by CBM
- \succ Latest ideas on the potential new information at low p_T values
- > Outlook

Expectations based on QCD

QCD Critical Points

Experimental facilities

LHC: Collider Pb+Pb @5020GeV/A

RHIC: Collider Au+Au @ 200GeV/A

QCD phase diagram covered by CBM

STAR

Phase space coverage

CBM Au-Au 4 A·GeV

B. Kimelman, STAR Collaboration, CPOD 2021

STAR

K.Meehan, STAR Collaboration, RHIC&AGS Users Meeting 2016

What remains for CBM ?

- much higher statistics: multi-differential analysis
 rare probes
- > larger dynamical range
- > better data quality
- new ideas

Azimuthal distributions

What should be expected as a function of incident energy ?

A.Andronic, G.Stoicea, M.Petrovici & FOPI Coll. NPA679(2001)765

Transition energy - multi-differential analysis

FOPI Collaboration

$$R_N = \frac{dN/d\phi(90^\circ) + dN/d\phi(270^\circ)}{dN/d\phi(0^\circ) + dN/d\phi(180^\circ)} = \frac{1 - a_2}{1 + a_2} \qquad \frac{dN}{d\phi} = a_0 \cdot \left[1 + a_1 \cos\phi + a_2 \cos(2\phi)\right]$$

A.Andronic PhD Thesis

FOPI - phase space coverage

Azimuthal distributions

What should be expected as a function of incident energy ?

13

E_{kin} spectra Au-Au 250 A·MeV

Radial expansion of compressed baryonic matter

Highly central A-A collisions

M.Petrovici, "Exotic Nuclei and Nuclear/Particle Astrophysics", AIP Conf.Proc. 972(2004)072303 A.Andronic PhD Thesis

Mean kinetic energy azimuthal distributions

$$\begin{split} \langle E_{kin}^{cm} \rangle &\approx \frac{1}{2} m_0 < \beta_{flow}^2 > A_{IMF} + \frac{3}{2} "T" \\ E_{coll} &= \frac{1}{2} m_0 \langle \beta_{flow}^2 \rangle \end{split}$$

G.Stoicea, M.Petrovici & FOPI Phys.Rev.Lett. 92(2004)072303 G.Stoicea PhD Thesis

E_{coll} & "T" azimuthal distributions

G.Stoicea, M.Petrovici & FOPI Coll., Phys.Rev.Lett. 92(2004)072303

- A. Pop and M. Petrovici based on:
- J.C. Beicher et al., J.Phys. G325(1999)1859
- Y. Nara et al., Eur. Phys. J. A20(2018)1

- A. Pop and M. Petrovici based on:

- J.C. Beicher et al., J.Phys. G325(1999)1859
- Y. Nara et al., Eur. Phys. J. A20(2018)1

- transition from baryon-dominated to meson-dominated matter - UrQMD, QGSM?

L.V.Bravina et al., Phys.Rev. C78(2008)014907

- evolution of parton fraction in the total energy density - PHSD?

V.P.Konchakovski et al., Phys.Rev. C85(2021)044922

- M. Petrovici et al., Phys.Rev. C98(2018)024904

- S.A. Adamczyk et al., STAR Collaboration, Phys.Rev. C92(2015)014904

- pions' kinetic freeze-out eccentricity

- S.A. Adamczyk et al., STAR Collaboration, Phys.Rev. C92(2015)014904

Signatures of Moat Regimes in Heavy-Ion Collisions

Regimes which feature periodic modulations of the spatial structure, where the energy spectrum is shaped like a moat, with the minimum of the energy over a sphere at nonzero momentum.

Soft pions and transport near the chiral critical point

The hydrodynamic theories at high and low temperatures are separated by the chiral critical point, which is somewhat analogous to the critical point separating the normal and superfluid phases of helium
 phenomenological estimate for how chiral fluctuations could effect the momentum spectrum of soft pions

The yields for soft pions due to a critical modification of the dispersion curve, relative to an expectation based on the vacuum dispersion curve

Outlook

- Model predictions are mandatory for guiding the experiment and data analysis
- The confirmation/support for underlying physics and validation of different approximations used by the models require detailed complementary multi-differential analyses
- Independent of how challenging the models are, a careful analysis should not exclude new findings
- How to reach low p_T measurement in CBM see next presentation

Back-up slides

ALICE Collaboration, Phys.Rev. C99(2019)024906

Fireball shape & shadowing effects at SIS18

G.Stoicea, M.Petrovici & FOPI Coll., Phys.Rev.Lett. 92(2004)072303

Shadowing effects - EoS

M.Petrovici et al., Phys.Rev.Lett. 74(1995)5001 G.Stoicea, M.Petrovici & FOPI Coll., Phys.Rev.Lett. 92(2004)072303 P.Danielewicz, Nucl.Phys. A6873(2000)375 and ref. therein